scholarly journals Wild Sambucus nigra L. from north-east edge of the species range: A valuable germplasm with inhibitory capacity against SARS-CoV2 S-protein RBD and hACE2 binding in vitro

2021 ◽  
Vol 165 ◽  
pp. 113438
Author(s):  
Anete Boroduske ◽  
Kaspars Jekabsons ◽  
Una Riekstina ◽  
Ruta Muceniece ◽  
Nils Rostoks ◽  
...  
Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 285
Author(s):  
Manuela Rodríguez-Romero ◽  
Belén Godoy-Cancho ◽  
Isabel M. Calha ◽  
José António Passarinho ◽  
Ana Cristina Moreira

The ability of three herbaceous plants (Diplotaxis tenuifolia (L.) DC., Eruca vesicaria L. and Raphanus raphanistrum L.) from Iberian wood pastures to reduce Phytophthora cinnamomi Rands pathogen populations through allelopathic relationships is studied. The inhibitory capacity of their aqueous root extracts (AREs) on mycelial growth and production of P. cinnamomi reproductive structures is analysed in vitro. In addition, Quercus seedlings were grown in infested by P. cinnamomi-soils and with the presence or absence of allelopathic and susceptible herb species to the pathogen to assess the defensive chemical response of Quercus seedlings through their leaf phenolic compounds. Results show a strong inhibitory capacity of AREs on P. cinnamomi activity in vitro and a protective effect of these herb species on Quercus plants against P. cinnamomi in vivo. D. tenuifolia would be especially suited for biological control in the pathogen suppression.


2018 ◽  
Vol 4 (3) ◽  
pp. 114-119
Author(s):  
Quang Ung Le ◽  
◽  
Horng Liang Lay ◽  
Ming Chang Wu ◽  
◽  
...  

Agrimonia pilosa Ledeb (AL) has received considerable attention as a herbal medicine for its applications in ethnopharmacology with heath benefits. This study aimed to investigate antioxidant activities and A549 growth inhibitory capacity from its root extract (RE) and aerial parts extract (AE). The 50% ethanol extracts were used for the tests. The total polyphenol content and the antioxidant effects comprising ABTS+ and DPPH free radical scavenging activities were evaluated. Phenolic compounds in the extracts were isolated using high performance liquid chromatography (HPLC). Lactate dehydrogenase released in medium was also evaluated. Total phenolic and flavonoid content, and in vitro antioxidant potential of the RE were higher (p<0.01) than that of the AE. Two individual phenolic compounds consisting of 4-hydroxybenzoic acid and p-coumaric acid were firstly identified in both by HPLC. The RE exhibited higher A549 inhibitory capacity compared to the AE and activated the apoptotic proteins of bcl-2, bax, bad, caspase-3 and caspase-9 in A549. In conclusion, the AL extracts were more effective in antioxidant and A549 cells inhibitory capacity.


2000 ◽  
Vol 130 (1) ◽  
pp. 15-20 ◽  
Author(s):  
Alison M. Gray ◽  
Yasser H. A. Abdel-Wahab ◽  
Peter R. Flatt

Author(s):  
Ashis Kumar Goswami ◽  
Hemanta Kumar Sharma ◽  
Neelutpal Gogoi ◽  
Ankita Kashyap ◽  
Bhaskar Jyoti Gogoi

Background: Malaria is caused by different species of Plasmodium; among which P. falciparum is the most severe. Coptis teeta is an ethnomedicinal plant of enormous importance for tribes of north east India. Objective: In this study, the anti malarial activity of the methanol extracts of Coptis teeta was evaluated in vitro and lead identification via in silico study. Method: On the basis of the in vitro results, in silico analysis by application of different modules of Discovery Studio 2018 was performed on multiple targets of P. falciparum taking into consideration some of the compounds reported from C. teeta. Results: The IC50 of the methanol extract of Coptis teeta 0.08 µg/ml in 3D7 strain and 0.7 µg/ml in Dd2 strain of P. falciparum. From the docking study, noroxyhydrastatine was observed to have better binding affinity in comparison to chloroquine. The binding of noroxyhydrastinine with dihydroorotate dehydrogenase was further validated by molecular dynamics simulation and was observed to be significantly stable in comparison to the co-crystal inhibitor. During simulations it was observed that noroxyhydrastinine retained the interactions, giving strong indications of its effectiveness against the P. falciparum proteins and stability in the binding pocket. From the Density-functional theory analysis, the band gap energy of noroxyhydrastinine was found to be 0.186 Ha indicating a favourable interaction. Conclusion: The in silico analysis as an addition to the in vitro results provide strong evidence of noroxyhydrastinine as an anti malarial agent.


Viruses ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 629 ◽  
Author(s):  
Mizuki Yamamoto ◽  
Maki Kiso ◽  
Yuko Sakai-Tagawa ◽  
Kiyoko Iwatsuki-Horimoto ◽  
Masaki Imai ◽  
...  

Although infection by SARS-CoV-2, the causative agent of coronavirus pneumonia disease (COVID-19), is spreading rapidly worldwide, no drug has been shown to be sufficiently effective for treating COVID-19. We previously found that nafamostat mesylate, an existing drug used for disseminated intravascular coagulation (DIC), effectively blocked Middle East respiratory syndrome coronavirus (MERS-CoV) S protein-mediated cell fusion by targeting transmembrane serine protease 2 (TMPRSS2), and inhibited MERS-CoV infection of human lung epithelium-derived Calu-3 cells. Here we established a quantitative fusion assay dependent on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein, angiotensin I converting enzyme 2 (ACE2) and TMPRSS2, and found that nafamostat mesylate potently inhibited the fusion while camostat mesylate was about 10-fold less active. Furthermore, nafamostat mesylate blocked SARS-CoV-2 infection of Calu-3 cells with an effective concentration (EC)50 around 10 nM, which is below its average blood concentration after intravenous administration through continuous infusion. On the other hand, a significantly higher dose (EC50 around 30 μM) was required for VeroE6/TMPRSS2 cells, where the TMPRSS2-independent but cathepsin-dependent endosomal infection pathway likely predominates. Together, our study shows that nafamostat mesylate potently inhibits SARS-CoV-2 S protein-mediated fusion in a cell fusion assay system and also inhibits SARS-CoV-2 infection in vitro in a cell-type-dependent manner. These findings, together with accumulated clinical data regarding nafamostat’s safety, make it a likely candidate drug to treat COVID-19.


1987 ◽  
Vol 243 (1) ◽  
pp. 105-111 ◽  
Author(s):  
K T Preissner ◽  
L Zwicker ◽  
G Müller-Berghaus

S protein, a plasma glycoprotein with Mr 78,000, has been shown to interfere with the heparin-catalysed inhibition of thrombin by antithrombin III. This interaction was further evaluated in the present study. Native human blood was replaced by either radiolabelled antithrombin III or radiolabelled prothrombin in the reaction mixture, which was incubated at 37 degrees C. At various time intervals the serum formed from the incubated blood was withdrawn and analysed by crossed immunoelectrophoresis against anti-(S protein) serum in the second dimension. Increasing quantities of radioactivity originating both from antithrombin III and from thrombin were precipitated in a cathodal shoulder to the S protein peak. This observation indicated the formation of a ternary S protein-thrombin-antithrombin III (STAT) complex in serum. This complex could also be observed by the same technique after incubation of purified thrombin in the presence of antithrombin III and S protein. Complex-formation was independent of the presence of heparin and did not require Ca2+ ions. Owing to the association of S protein with the thrombin-antithrombin III (TAT) complex, the STAT complex assembled in vitro exhibited a higher Mr than the TAT complex as judged by polyacrylamide-gradient-gel electrophoresis in the absence of SDS. Both the serum-originated STAT complex and the STAT complex assembled from purified components sedimented faster than the single components and showed comparable apparent sedimentation coefficients in the range 11-14 S, corresponding to a mean Mr of 350,000. The STAT complex could be detected in serum at a dilution of 1:3200 by a sensitive immuno-radiometric assay employing affinity-purified IgG against S protein. These results indicate that S protein, in addition to its role as a heparin-neutralizing factor, becomes incorporated into the nascent TAT complex or can bind to preformed TAT complex during the clotting process.


2003 ◽  
Vol 77 (19) ◽  
pp. 10260-10269 ◽  
Author(s):  
Evelena Ontiveros ◽  
Taeg S. Kim ◽  
Thomas M. Gallagher ◽  
Stanley Perlman

ABSTRACT The coronavirus, mouse hepatitis virus strain JHM, causes acute and chronic neurological diseases in rodents. Here we demonstrate that two closely related virus variants, both of which cause acute encephalitis in susceptible strains of mice, cause markedly different diseases if mice are protected with a suboptimal amount of an anti-JHM neutralizing antibody. One strain, JHM.SD, caused acute encephalitis, while infection with JHM.IA resulted in no acute disease. Using recombinant virus technology, we found that the differences between the two viruses mapped to the spike (S) glycoprotein and that the two S proteins differed at four amino acids. By engineering viruses that differed by only one amino acid, we identified a serine-to-glycine change at position 310 of the S protein (S310G) that recapitulated the more neurovirulent phenotype. The increased neurovirulence mediated by the virus encoding glycine at position S310 was not associated with a different tropism within the central nervous system (CNS) but was associated with increased lateral spread in the CNS, leading to significantly higher brain viral titers. In vitro studies revealed that S310G was associated with decreased S1-S2 stability and with enhanced ability to mediate infection of cells lacking the primary receptor for JHM (“receptor-independent spread”). These enhanced fusogenic properties of viruses encoding a glycine at position 310 of the S protein may contribute to spread within the CNS, a tissue in which expression of conventional JHM receptors is low.


1999 ◽  
Vol 63 (4) ◽  
pp. 844-861 ◽  
Author(s):  
Reed B. Wickner ◽  
Kimberly L. Taylor ◽  
Herman K. Edskes ◽  
Marie-Lise Maddelein ◽  
Hiromitsu Moriyama ◽  
...  

SUMMARY Genetic evidence showed two non-Mendelian genetic elements of Saccharomyces cerevisiae, called [URE3] and [PSI], to be prions of Ure2p and Sup35p, respectively. [URE3] makes cells derepressed for nitrogen catabolism, while [PSI] elevates the efficiency of weak suppressor tRNAs. The same approach led to identification of the non-Mendelian element [Het-s] of the filamentous fungus Podospora anserina, as a prion of the het-s protein. The prion form of the het-s protein is required for heterokaryon incompatibility, a normal fungal function, suggesting that other normal cellular functions may be controlled by prions. [URE3] and [PSI] involve a self-propagating aggregation of Ure2p and Sup35p, respectively. In vitro, Ure2p and Sup35p form amyloid, a filamentous protein structure, high in β-sheet with a characteristic green birefringent staining by the dye Congo Red. Amyloid deposits are a cardinal feature of Alzheimer’s disease, non-insulin-dependent diabetes mellitus, the transmissible spongiform encephalopathies, and many other diseases. The prion domain of Ure2p consists of Asn-rich residues 1 to 80, but two nonoverlapping fragments of the molecule can, when overproduced, induce the de nova appearance of [URE3]. The prion domain of Sup35 consists of residues 1 to 114, also rich in Asn and Gln residues. While runs of Asn and Gln are important for [URE3] and [PSI], no such structures are found in PrP or the Het-s protein. Either elevated or depressed levels of the chaperone Hsp104 interfere with propagation of [PSI]. Both [URE3] and [PSI] are cured by growth of cells in millimolar guanidine HCl. [URE3] is also cured by overexpression of fragments of Ure2p or fusion proteins including parts of Ure2p.


Sign in / Sign up

Export Citation Format

Share Document