Highly sensitive multi-pass enhanced photoacoustic cell based on three spot-ring structure (TSR-MPC)

2021 ◽  
Vol 118 ◽  
pp. 103880
Author(s):  
Chu Zhang ◽  
Qiaoyun Wang ◽  
Hao Pan ◽  
Feifei Pian ◽  
Zhigang Li ◽  
...  
1966 ◽  
Vol 44 (3) ◽  
pp. 279-295 ◽  
Author(s):  
W. H. Lunn ◽  
J. T. Edward ◽  
Seymour Meyerson

Epimerization of 4-oxa-3-oxo-5α-cholestane by Brewster and Kucera's method gave only a 23% yield of the 5β-lactone; several other compounds were formed, apparently via skeletal rearrangement during hydrolysis of the tosylate. The attempted epimerization of 4-oxa-3-oxo-5β-cholestane gave mainly unsaturated acids, but no 5α-lactone (a small amount of skeletal rearrangement also occurred). Both epimers undergo rearrangement to γ-lactones when treated with trifluoroacetic acid.Mass spectra, used in conjunction with infrared and nuclear magnetic resonance spectra and other data to make structural assignments, were found to be highly sensitive to certain structural features. In particular, they can usually distinguish sharply between molecules that contain a pendant ring structure and those that do not.


Author(s):  
T. M. Seed ◽  
M. H. Sanderson ◽  
D. L. Gutzeit ◽  
T. E. Fritz ◽  
D. V. Tolle ◽  
...  

The developing mammalian fetus is thought to be highly sensitive to ionizing radiation. However, dose, dose-rate relationships are not well established, especially the long term effects of protracted, low-dose exposure. A previous report (1) has indicated that bred beagle bitches exposed to daily doses of 5 to 35 R 60Co gamma rays throughout gestation can produce viable, seemingly normal offspring. Puppies irradiated in utero are distinguishable from controls only by their smaller size, dental abnormalities, and, in adulthood, by their inability to bear young.We report here our preliminary microscopic evaluation of ovarian pathology in young pups continuously irradiated throughout gestation at daily (22 h/day) dose rates of either 0.4, 1.0, 2.5, or 5.0 R/day of gamma rays from an attenuated 60Co source. Pups from non-irradiated bitches served as controls. Experimental animals were evaluated clinically and hematologically (control + 5.0 R/day pups) at regular intervals.


Author(s):  
R. Y. Tsien ◽  
A. Minta ◽  
M. Poenie ◽  
J.P.Y. Kao ◽  
A. Harootunian

Recent technical advances now enable the continuous imaging of important ionic signals inside individual living cells with micron spatial resolution and subsecond time resolution. This methodology relies on the molecular engineering of indicator dyes whose fluorescence is strong and highly sensitive to ions such as Ca2+, H+, or Na+, or Mg2+. The Ca2+ indicators, exemplified by fura-2 and indo-1, derive their high affinity (Kd near 200 nM) and selectivity for Ca2+ to a versatile tetracarboxylate binding site3 modeled on and isosteric with the well known chelator EGTA. The most commonly used pH indicators are fluorescein dyes (such as BCECF) modified to adjust their pKa's and improve their retention inside cells. Na+ indicators are crown ethers with cavity sizes chosen to select Na+ over K+: Mg2+ indicators use tricarboxylate binding sites truncated from those of the Ca2+ chelators, resulting in a more compact arrangement of carboxylates to suit the smaller ion.


Author(s):  
J. Silcox ◽  
R. H. Wade

Recent work has drawn attention to the possibilities that small angle electron scattering offers as a source of information about the micro-structure of vacuum condensed films. In particular, this serves as a good detector of discontinuities within the films. A review of a kinematical theory describing the small angle scattering from a thin film composed of discrete particles packed close together will be presented. Such a model could be represented by a set of cylinders packed side by side in a two dimensional fluid-like array, the axis of the cylinders being normal to the film and the length of the cylinders becoming the thickness of the film. The Fourier transform of such an array can be regarded as a ring structure around the central beam in the plane of the film with the usual thickness transform in a direction normal to the film. The intensity profile across the ring structure is related to the radial distribution function of the spacing between cylinders.


Author(s):  
C. Boulesteix ◽  
C. Colliex ◽  
C. Mory ◽  
B. Pardo ◽  
D. Renard

Contrast mechanisms, which are responsible of the various types of image formation, are generally thickness dependant. In the following, two imaging modes in the 100 kV CTEM are described : they are highly sensitive to thickness variations and can be used for quantitative estimations of step heights.Detailed calculations (1) of the bright-field intensity have been carried out in the 3 (or 2N+l)-beam symmetric case. They show that in given conditions, the two important symmetric Bloch waves interfere most strongly at a critical thickness for which they have equal emergent amplitudes (the more excited wave at the entrance surface is also the more absorbed). The transmitted intensity I for a Nd2O3 specimen has been calculated as a function of thickness t. The capacity of the method to detect a step and measure its height can be more clearly deduced from a plot of dl/Idt as shown in fig. 1.


Author(s):  
T. Oikawa ◽  
N. Mori ◽  
T. Katoh ◽  
Y. Harada ◽  
J. Miyahara ◽  
...  

The “Imaging Plate”(IP) is a highly sensitive image recording plate for X-ray radiography. It has been ascertained that the IP has superior properties and high practicability as an image recording material in a TEM. The sensitivity, one of the properties, is about 3 orders higher than that of conventional photo film. The IP is expected to be applied to low dose techniques. In this paper, an estimation of the quantum noise on the TEM image which appears in case of low electron dose on the IP is reported.In this experiment, the JEM-2000FX TEM and an IP having the same size as photo film were used.Figure 1 shows the schematic diagram of the total system including the TEM used in this experiment. In the reader, He-Ne laser light is scanned across the IP, then blue light is emitted from the IP.


Author(s):  
Max T. Otten

Labelling of antibodies with small gold probes is a highly sensitive technique for detecting specific molecules in biological tissue. Larger gold probes are usually well visible in TEM or STEM Bright-Field images of unstained specimens. In stained specimens, however, the contrast of the stain is frequently the same as that of the gold labels, making it virtually impossible to identify the labels, especially when smaller gold labels are used to increase the sensitivity of the immunolabelling technique. TEM or STEM Dark-Field images fare no better (Figs. 1a and 2a), again because of the absence of a clear contrast difference between gold labels and stain.Potentially much more useful is backscattered-electron imaging, since this will show differences in average atomic number which are sufficiently large between the metallic gold and the stains normally used. However, for the thin specimens and at high accelerating voltages of the STEM, the yield of backscattered electrons is very small, resulting in a very weak signal. Consequently, the backscattered-electron signal is often too noisy for detecting small labels, even for large spot sizes.


Author(s):  
Chi-Ming Wei ◽  
Margaret Hukee ◽  
Christopher G.A. McGregor ◽  
John C. Burnett

C-type natriuretic peptide (CNP) is a newly identified peptide that is structurally related to atrial (ANP) and brain natriuretic peptide (BNP). CNP exists as a 22-amino acid peptide and like ANP and BNP has a 17-amino acid ring formed by a disulfide bond. Unlike these two previously identified cardiac peptides, CNP lacks the COOH-terminal amino acid extension from the ring structure. ANP, BNP and CNP decrease cardiac preload, but unlike ANP and BNP, CNP is not natriuretic. While ANP and BNP have been localized to the heart, recent investigations have failed to detect CNP mRNA in the myocardium although small concentrations of CNP are detectable in the porcine myocardium. While originally localized to the brain, recent investigations have localized CNP to endothelial cells consistent with a paracrine role for CNP in the control of vascular tone. While CNP has been detected in cardiac tissue by radioimmunoassay, no studies have demonstrated CNP localization in normal human heart by immunoelectron microscopy.


Sign in / Sign up

Export Citation Format

Share Document