An adiabatic quantum algorithm and its application to DNA motif model discovery

2015 ◽  
Vol 296 ◽  
pp. 275-281
Author(s):  
Huaixin Cao ◽  
Dianhui Wang ◽  
Feilong Cao
2005 ◽  
Vol 187 (22) ◽  
pp. 7795-7804 ◽  
Author(s):  
Guangchun Bai ◽  
Lee Ann McCue ◽  
Kathleen A. McDonough

ABSTRACT Little is known about cyclic AMP (cAMP) function in Mycobacterium tuberculosis, despite its ability to encode 15 adenylate cyclases and 10 cNMP-binding proteins. M. tuberculosis Rv3676, which we have designated CRPMt, is predicted to be a cAMP-dependent transcription factor. In this study, we characterized CRPMt's interactions with DNA and cAMP, using experimental and computational approaches. We used Gibbs sampling to define a CRPMt DNA motif that resembles the cAMP receptor protein (CRP) binding motif model for Escherichia coli. CRPMt binding sites were identified in a total of 73 promoter regions regulating 114 genes in the M. tuberculosis genome, which are being explored as a regulon. Specific CRPMt binding caused DNA bending, and the substitution of highly conserved nucleotides in the binding site resulted in a complete loss of binding to CRPMt. cAMP enhanced CRPMt's ability to bind DNA and caused allosteric alterations in CRPMt conformation. These results provide the first direct evidence for cAMP binding to a transcription factor in M. tuberculosis, suggesting a role for cAMP signal transduction in M. tuberculosis and implicating CRPMt as a cAMP-responsive global regulator.


2021 ◽  
Vol 20 (7) ◽  
Author(s):  
Yanbing Zhang ◽  
Tingting Song ◽  
Zhihao Wu

2021 ◽  
Vol 26 ◽  
Author(s):  
T. Berry ◽  
J. Sharpe

Abstract This paper introduces and demonstrates the use of quantum computers for asset–liability management (ALM). A summary of historical and current practices in ALM used by actuaries is given showing how the challenges have previously been met. We give an insight into what ALM may be like in the immediate future demonstrating how quantum computers can be used for ALM. A quantum algorithm for optimising ALM calculations is presented and tested using a quantum computer. We conclude that the discovery of the strange world of quantum mechanics has the potential to create investment management efficiencies. This in turn may lead to lower capital requirements for shareholders and lower premiums and higher insured retirement incomes for policyholders.


2021 ◽  
Vol 2 (1) ◽  
pp. 1-35
Author(s):  
Adrien Suau ◽  
Gabriel Staffelbach ◽  
Henri Calandra

In the last few years, several quantum algorithms that try to address the problem of partial differential equation solving have been devised: on the one hand, “direct” quantum algorithms that aim at encoding the solution of the PDE by executing one large quantum circuit; on the other hand, variational algorithms that approximate the solution of the PDE by executing several small quantum circuits and making profit of classical optimisers. In this work, we propose an experimental study of the costs (in terms of gate number and execution time on a idealised hardware created from realistic gate data) associated with one of the “direct” quantum algorithm: the wave equation solver devised in [32]. We show that our implementation of the quantum wave equation solver agrees with the theoretical big-O complexity of the algorithm. We also explain in great detail the implementation steps and discuss some possibilities of improvements. Finally, our implementation proves experimentally that some PDE can be solved on a quantum computer, even if the direct quantum algorithm chosen will require error-corrected quantum chips, which are not believed to be available in the short-term.


Author(s):  
Angélique Buton ◽  
Louis-Marie Bobay

Abstract Homologous recombination is a key pathway found in nearly all bacterial taxa. The recombination complex allows bacteria to repair DNA double strand breaks but also promotes adaption through the exchange of DNA between cells. In Proteobacteria, this process is mediated by the RecBCD complex, which relies on the recognition of a DNA motif named Chi to initiate recombination. The Chi motif has been characterized in Escherichia coli and analogous sequences have been found in several other species from diverse families, suggesting that this mode of action is widespread across bacteria. However, the sequences of Chi-like motifs are known for only five bacterial species: E. coli, Haemophilus influenzae, Bacillus subtilis, Lactococcus lactis and Staphylococcus aureus. In this study we detected putative Chi motifs in a large dataset of Proteobacteria and we identified four additional motifs sharing high sequence similarity and similar properties to the Chi motif of E. coli in 85 species of Proteobacteria. Most Chi motifs were detected in Enterobacteriaceae and this motif appears well conserved in this family. However, we did not detect Chi motifs for the majority of Proteobacteria, suggesting that different motifs are used in these species. Altogether these results substantially expand our knowledge on the evolution of Chi motifs and on the recombination process in bacteria.


Sign in / Sign up

Export Citation Format

Share Document