Martensitic transformation to monoclinic phase in bulk B2–CuZr

2017 ◽  
Vol 91 ◽  
pp. 16-21 ◽  
Author(s):  
Nicolás Amigo ◽  
Matías Sepúlveda-Macías ◽  
Gonzalo Gutiérrez
2018 ◽  
Vol 2 (7) ◽  
Author(s):  
Pär A. T. Olsson ◽  
Per Hyldgaard ◽  
Elsebeth Schröder ◽  
Elin Persson Jutemar ◽  
Eskil Andreasson ◽  
...  

2013 ◽  
Vol 738-739 ◽  
pp. 468-472
Author(s):  
R. Coll ◽  
J. Bonastre ◽  
J. Saurina ◽  
J.J. Suñol ◽  
L. Escoda ◽  
...  

In this work, we analyze two Mn50Ni50-xSnx alloys with Sn content i.e., x = 5 and 7.5 respectively. These alloys are produced as ribbon-shape by melt spinning. Their structural transformation is checked by calorimetry. Martensitic transformation temperatures of these alloys strongly depend on the composition. From X-ray diffraction analysis, the 14M monoclinic phase is the main phase in both alloys, but in the alloy Sn5 appears a minor tetragonal phase too.


Author(s):  
G. M. Michal

Several TEM investigations have attempted to correlate the structural characteristics to the unusual shape memory effect in NiTi, the consensus being the essence of the memory effect is ostensible manifest in the structure of NiTi transforming martensitic- ally from a B2 ordered lattice to a low temperature monoclinic phase. Commensurate with the low symmetry of the martensite phase, many variants may form from the B2 lattice explaining the very complex transformed microstructure. The microstructure may also be complicated by the enhanced formation of oxide or hydride phases and precipitation of intermetallic compounds by electron beam exposure. Variants are typically found in selfaccommodation groups with members of a group internally twinned and the twins themselves are often observed to be internally twinned. Often the most salient feature of a group of variants is their close clustering around a given orientation. Analysis of such orientation relationships may be a key to determining the nature of the reaction path that gives the transformation its apparently perfect reversibility.


Author(s):  
R-R. Lee

Partially-stabilized ZrO2 (PSZ) ceramics have considerable potential for advanced structural applications because of their high strength and toughness. These properties derive from small tetragonal ZrO2 (t-ZrO2) precipitates in a cubic (c) ZrO2 matrix, which transform martensitically to monoclinic (m) symmetry under applied stresses. The kinetics of the martensitic transformation is believed to be nucleation controlled and the nucleation is always stress induced. In situ observation of the martensitic transformation using transmission electron microscopy provides considerable information about the nucleation and growth aspects of the transformation.


Author(s):  
K.B. Reuter ◽  
D.B. Williams ◽  
J.I. Goldstein

In the Fe-Ni system, although ordered FeNi and ordered Ni3Fe are experimentally well established, direct evidence for ordered Fe3Ni is unconvincing. Little experimental data for Fe3Ni exists because diffusion is sluggish at temperatures below 400°C and because alloys containing less than 29 wt% Ni undergo a martensitic transformation at room temperature. Fe-Ni phases in iron meteorites were examined in this study because iron meteorites have cooled at slow rates of about 10°C/106 years, allowing phase transformations below 400°C to occur. One low temperature transformation product, called clear taenite 2 (CT2), was of particular interest because it contains less than 30 wtZ Ni and is not martensitic. Because CT2 is only a few microns in size, the structure and Ni content were determined through electron diffraction and x-ray microanalysis. A Philips EM400T operated at 120 kV, equipped with a Tracor Northern 2000 multichannel analyzer, was used.


Author(s):  
Jenö Beyer ◽  
Lajos Tóth

The structural changes during reversible martensitic transformation of near-equiatomic NiTi alloys can best be studied in TEM at around room temperature. Ternary additions like Mn offer this possibility by suppressing the Ms temperature below RT. Besides the stable intermetallic phases (Ti2Ni, TiNi, TiNi3) several metastable phases with various crystallographic structures (rhombohedral, hexagonal, monoclinic, cubic) have also been reported to precipitate due to suitable annealing procedures.TiNi:Mn samples with 0.9 and 1.3 at% Mn were arc melted in argon atmosphere and homogenized at 948 °C for 72 hours in high vacuum in an infrared furnace. After spark cutting slices of 0.2 mm, TEM specimens were prepared by electrochemical polishing with the twin-jet technique in methanol - perchloric acid electrolyte. The TEM study was carried out in a JEOL 200 CX analytical electron microscope.In this paper a new intermetallic phase is reported which has been observed in both samples by TEM during the martensitic transformation process.


Author(s):  
M. Vallet-Regí ◽  
M. Parras ◽  
J.M. González-Calbet ◽  
J.C. Grenier

BaFeO3-y compositions (0.35<y<0.50) have been investigated by means of electron diffraction and microscopy to resolve contradictory results from powder X-ray diffraction data.The samples were obtained by annealing BaFeO2.56 for 48 h. in the temperature range from 980°C to 1050°C . Total iron and barium in the samples were determined using chemical analysis and gravimetric methods, respectively.In the BaFeO3-y system, according to the electron diffraction and microscopy results, the nonstoichiometry is accommodated in different ways as a function of the composition (y):In the domain between BaFeO2.5+δBaFeO2.54, compositional variations are accommodated through the formation of microdomains. Fig. la shows the ED pattern of the BaFeO2.52 material along thezone axis. The corresponding electron micrograph is seen in Fig. 1b. Several domains corresponding to the monoclinic BaFeO2.50 phase, intergrow with domains of the orthorhombic phase. According to that, the ED pattern of Fig. 1a, can be interpreted as formed by the superposition of three types of diffraction maxima : Very strong spots corresponding to a cubic perovskite, a set of maxima due to the superposition of three domains of the monoclinic phase along [100]m and a series of maxima corresponding to three domains corresponding to the orthorhombic phase along the [100]o.


1995 ◽  
Vol 05 (C8) ◽  
pp. C8-973-C8-978
Author(s):  
M. Jurado ◽  
Ll. Mañosa ◽  
A. González-Comas ◽  
C. Stassis ◽  
A. Planes

2003 ◽  
Vol 112 ◽  
pp. 495-498
Author(s):  
V. V. Kokorin ◽  
L. E. Kozlova ◽  
A. N. Titenko

Sign in / Sign up

Export Citation Format

Share Document