Liver 5-HT7 receptors: A novel regulator target of fibrosis and inflammation-induced chronic liver injury in vivo and in vitro

2017 ◽  
Vol 43 ◽  
pp. 227-235 ◽  
Author(s):  
Beyzagul Polat ◽  
Zekai Halici ◽  
Elif Cadirci ◽  
Emre Karakus ◽  
Yasin Bayir ◽  
...  
2019 ◽  
Vol 20 (19) ◽  
pp. 4872 ◽  
Author(s):  
Zhao ◽  
Li ◽  
Feng ◽  
Zhang ◽  
Yuan ◽  
...  

A major fraction (MPT-W), eluted by deionized water, was extracted from mycelium polysaccharides of Termitomyces albuminosus (MPT), and its antioxidant, anti-fibrosis, and anti-inflammatory activities in CCl4-induced chronic liver injury mice, as well as preliminary characterizations, were evaluated. The results showed that MPT-W was a polysaccharide of α- and β-configurations containing xylose (Xyl), fucose (Fuc), mannose (Man), galactose (Gal), and glucose (Glc) with a molar ratio of 0.29:8.67:37.89:35.98:16.60 by gas chromatography-mass spectrometry (GC-MS), Fourier transform infrared (FT-IR) spectroscopy. Its molecular weight (Mw), obtained by high-performance gel permeation chromatography (HPGPC), was 1.30 × 105 Da. The antioxidant assays in vitro showed that MPT-W displayed scavenging free-radical abilities. Based on the data of in vivo experiments, MPT-W could inhibit TGFβ1/Smad3 and NF-κB pathways; decrease the level and activity of cytochrome P4502E1 (CYP2E1), malonaldehyde (MDA) and serum enzyme; activate the HO-1/Nrf2 pathway; and increase antioxidant enzymes to protect the liver in CCl4-induced chronic liver injury mice. Therefore, MPT-W could be a potentially natural and functional resource contributing to antioxidant, hepatoprotective, and anti-inflammatory effects with potential health benefits.


2021 ◽  
Author(s):  
Min Cao ◽  
Yiyang Wang ◽  
Haizhao Liu ◽  
Xueqian Dong ◽  
Mengxue Dong ◽  
...  

Abstract BackgroundThe present study aimed to validate the protect effect of Kangxian pill (KXP) on chronic hepatic injury (CHI) and investigate its potential mechanism by network pharmacology-based prediction and experimental verification in vivo . MethodsThe effect of KXP in the treatment of carbon tetrachloride (CCL 4 )-induced CHI is investigated by calculating liver index, measuring AST and ALT levels and performing HE staining. Targets of active ingredients of KXP were predicted in TCSMP and targets of chronic liver injury were searched in DisGeNET, OMIM and GeneCards databases. We obtain some pivotal targets of KXP for the treatment of CHI by intersecting the targets of KXP and CHI. Subsequently, we performed gene ontology (GO) functional and pathways enrichment analyses, as well as conducted networks based on potential targets to determine the core targets and representative pathways.We further validated expressions of IL-6, IL-1β, TNF-α, Bax, Bcl2, PI3K, Akt, and pAkt according to the potential molecular mechanisms analyzed based on network pharmacology analysis.ResultsThe results showed that the levels of AST and ALT in serum decreased after treatment with KXP. HE staining also revealed that KXP could improve hepatocyte abnormality in vivo . A total of 81 potential targets of KXP in the treatment of CHI were identified through network pharmacology analysis. After integrating potential targets, function enrichment, representative pathways and networks, we identified PI3K, AKT1,BCL2, TNF-α, IL-1β, and IL-6 as potential targets, which may play a vital role in the KXP treatment. The experimental results also showed that KXP could down-regulate the mRNA and protein expression of IL-1β, IL-6, TNF-α and Bax, and up-regulate the PI3K and p-Akt protein expression i n vivo .ConclusionsOur results suggest that KXP could alleviate CHI through regulating inflammation and apoptosis and provide deep insight into the hepato-protective mechanisms.


2016 ◽  
Vol 40 (1-2) ◽  
pp. 49-61 ◽  
Author(s):  
Quanfang Huang ◽  
Chunhong Liang ◽  
Ling Wei ◽  
Jinlan Nie ◽  
Shengjuan Lu ◽  
...  

Background/Aims: Raf kinase inhibitory protein (RKIP) is closely associated with numerous tumors and participates in their development through regulating the growth, apoptosis, invasion and metastasis of tumor cells. However, the role of RKIP in chronic liver injury and particularly in liver fibrosis is still unclear. Methods: In the present study, hepatic fibrosis was induced by porcine serum (PS) in rats and primary hepatic stellate cells (HSCs) were isolated from rat livers. Moreover, locostatin was used to interfere with RKIP expression. Results: RKIP expression was significantly inhibited by locostatin in both liver tissues of rats and primary HSCs. Down-regulating RKIP expression resulted in serious liver injury, extensive accumulation of collagen, and significant increase in the levels of ALT, AST and TNF-α during liver fibrosis in rats. Moreover, down-regulating RKIP significantly promoted HSCs proliferation and colony formation in vitro. Reduced RKIP significantly increased the production of collagen and the level of α-SMA as well as the expression of MMP-1 and MMP-2 in both liver tissues and primary HSCs. Furthermore, down-regulating RKIP promoted the activation of the ERK and TLR4 signaling pathways. Conclusion: Our findings clearly indicate an inverse correlation between RKIP level and the degree of the liver injury and fibrosis. The decrease in RKIP expression may exacerbate chronic liver injury and liver fibrosis.


2021 ◽  
Vol 22 (4) ◽  
pp. 2041
Author(s):  
Ji Hye Yang ◽  
Sae Kwang Ku ◽  
IL Je Cho ◽  
Je Hyeon Lee ◽  
Chang-Su Na ◽  
...  

Hepatic fibrosis occurs when liver tissue becomes scarred from repetitive liver injury and inflammatory responses; it can progress to cirrhosis and eventually to hepatocellular carcinoma. Previously, we reported that neoagarooligosaccharides (NAOs), produced by the hydrolysis of agar by β-agarases, have hepatoprotective effects against acetaminophen overdose-induced acute liver injury. However, the effect of NAOs on chronic liver injury, including hepatic fibrosis, has not yet been elucidated. Therefore, we examined whether NAOs protect against fibrogenesis in vitro and in vivo. NAOs ameliorated PAI-1, α-SMA, CTGF and fibronectin protein expression and decreased mRNA levels of fibrogenic genes in TGF-β-treated LX-2 cells. Furthermore, downstream of TGF-β, the Smad signaling pathway was inhibited by NAOs in LX-2 cells. Treatment with NAOs diminished the severity of hepatic injury, as evidenced by reduction in serum alanine aminotransferase and aspartate aminotransferase levels, in carbon tetrachloride (CCl4)-induced liver fibrosis mouse models. Moreover, NAOs markedly blocked histopathological changes and collagen accumulation, as shown by H&E and Sirius red staining, respectively. Finally, NAOs antagonized the CCl4-induced upregulation of the protein and mRNA levels of fibrogenic genes in the liver. In conclusion, our findings suggest that NAOs may be a promising candidate for the prevention and treatment of chronic liver injury via inhibition of the TGF-β/Smad signaling pathway.


Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1767 ◽  
Author(s):  
Jovana Markovic ◽  
Amar Deep Sharma ◽  
Asha Balakrishnan

The last decade has witnessed significant advancements in our understanding of how small noncoding RNAs, such as microRNAs (miRNAs), regulate disease progression. One such miRNA, miR-221, has been shown to play a key role in the progression of liver fibrosis, a common feature of most liver diseases. Many reports have demonstrated the upregulation of miR-221 in liver fibrosis caused by multiple etiologies such as viral infections and nonalcoholic steatohepatitis. Inhibition of miR-221 via different strategies has shown promising results in terms of the suppression of fibrogenic gene signatures in vitro, as well as in vivo, in independent mouse models of liver fibrosis. In addition, miR-221 has also been suggested as a noninvasive serum biomarker for liver fibrosis and cirrhosis. In this review, we discuss the biology of miR-221, its significance and use as a biomarker during progression of liver fibrosis, and finally, potential and robust approaches that can be utilized to suppress liver fibrosis via inhibition of miR-221.


2021 ◽  
Vol 22 (3) ◽  
pp. 1083
Author(s):  
Sukkum Ngullie Chang ◽  
Se Ho Kim ◽  
Debasish Kumar Dey ◽  
Seon Min Park ◽  
Omaima Nasif ◽  
...  

Polymethoxyflavanoids (PMFs) have exhibited a vast array of therapeutic biological properties. 5-O-Demethylnobiletin (5-DN) is one such PMF having anti-inflammatory activity, yet its role in hepatoprotection has not been studied before. Results from in vitro study revealed that 5-DN did not exert a high level of cytotoxicity on HepG2 cells at 40 μM, and it was able to rescue HepG2 cell death induced by carbon tetrachloride (CCl4). Subsequently, we investigated acute liver injury on BALB/c mice induced by CCl4 through the intraperitoneal injection of 1 mL/kg CCl4 and co-administration of 5-DN at (1 and 2 mg/kg) by oral gavage for 15 days. The results illustrated that treatment with 5-DN attenuated CCl4-induced elevated serum aminotransferase (AST)/alanine aminotransferase (ALT) ratio and significantly ameliorated severe hepatic damage such as inflammation and fibrosis evidenced through lesser aberrations in the liver histology of 5-DN dose groups. Additionally, 5-DN efficiently counteracted and equilibrated the production of ROS accelerated by CCl4 and dramatically downregulated the expression of CYP2E1 vitally involved in converting CCl4 to toxic free radicals and also enhanced the antioxidant enzymes. 5-DN treatment also inhibited cell proliferation and inflammatory pathway abnormally regulated by CCl4 treatment. Furthermore, the apoptotic response induced by CCl4 treatment was remarkably reduced by enhanced Bcl-2 expression and noticeable reduction in Bax, Bid, cleaved caspase 3, caspase 9, and apaf-1 expression. 5-DN treatment also induced the conversion of LC3 and promoted the autophagic flux. Conclusively, 5-DN exhibited hepatoprotective effects in vitro and in vivo and prevented liver fibrosis induced by CCl4.


Sign in / Sign up

Export Citation Format

Share Document