scholarly journals MicroRNA-221: A Fine Tuner and Potential Biomarker of Chronic Liver Injury

Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1767 ◽  
Author(s):  
Jovana Markovic ◽  
Amar Deep Sharma ◽  
Asha Balakrishnan

The last decade has witnessed significant advancements in our understanding of how small noncoding RNAs, such as microRNAs (miRNAs), regulate disease progression. One such miRNA, miR-221, has been shown to play a key role in the progression of liver fibrosis, a common feature of most liver diseases. Many reports have demonstrated the upregulation of miR-221 in liver fibrosis caused by multiple etiologies such as viral infections and nonalcoholic steatohepatitis. Inhibition of miR-221 via different strategies has shown promising results in terms of the suppression of fibrogenic gene signatures in vitro, as well as in vivo, in independent mouse models of liver fibrosis. In addition, miR-221 has also been suggested as a noninvasive serum biomarker for liver fibrosis and cirrhosis. In this review, we discuss the biology of miR-221, its significance and use as a biomarker during progression of liver fibrosis, and finally, potential and robust approaches that can be utilized to suppress liver fibrosis via inhibition of miR-221.

2019 ◽  
Vol 20 (19) ◽  
pp. 4872 ◽  
Author(s):  
Zhao ◽  
Li ◽  
Feng ◽  
Zhang ◽  
Yuan ◽  
...  

A major fraction (MPT-W), eluted by deionized water, was extracted from mycelium polysaccharides of Termitomyces albuminosus (MPT), and its antioxidant, anti-fibrosis, and anti-inflammatory activities in CCl4-induced chronic liver injury mice, as well as preliminary characterizations, were evaluated. The results showed that MPT-W was a polysaccharide of α- and β-configurations containing xylose (Xyl), fucose (Fuc), mannose (Man), galactose (Gal), and glucose (Glc) with a molar ratio of 0.29:8.67:37.89:35.98:16.60 by gas chromatography-mass spectrometry (GC-MS), Fourier transform infrared (FT-IR) spectroscopy. Its molecular weight (Mw), obtained by high-performance gel permeation chromatography (HPGPC), was 1.30 × 105 Da. The antioxidant assays in vitro showed that MPT-W displayed scavenging free-radical abilities. Based on the data of in vivo experiments, MPT-W could inhibit TGFβ1/Smad3 and NF-κB pathways; decrease the level and activity of cytochrome P4502E1 (CYP2E1), malonaldehyde (MDA) and serum enzyme; activate the HO-1/Nrf2 pathway; and increase antioxidant enzymes to protect the liver in CCl4-induced chronic liver injury mice. Therefore, MPT-W could be a potentially natural and functional resource contributing to antioxidant, hepatoprotective, and anti-inflammatory effects with potential health benefits.


2019 ◽  
Vol 20 (10) ◽  
pp. 2592 ◽  
Author(s):  
Wei-Hsiang Hsu ◽  
Se-Chun Liao ◽  
Yau-Jan Chyan ◽  
Kai-Wen Huang ◽  
Shih-Lan Hsu ◽  
...  

Background and Aims: Liver fibrosis is the excessive accumulation of extracellular matrix proteins, including collagen, which occurs in most types of chronic liver diseases. Advanced liver fibrosis results in cirrhosis, liver failure, and portal hypertension. Activated hepatic perivascular stellate cells, portal fibroblasts, and myofibroblasts of bone marrow origin have been identified as major collagen-producing cells in the injured liver. These cells are activated by fibrogenic cytokines, such as TGF-β1. The inhibition of TGF-β1 function or synthesis is a major target for the development of antifibrotic therapies. Our previous study showed that the water and ethanol extracts of Graptopetalum paraguayense (GP), a Chinese herbal medicine, can prevent dimethylnitrosamine (DMN)-induced hepatic inflammation and fibrosis in rats. Methods: We used rat hepatic stellate HSC-T6 cells and a diethylnitrosamine (DEN)-induced rat liver injury model to test the potential mechanism of GP extracts and its fraction, HH-F3. Results: We demonstrated that GP extracts and HH-F3 downregulated the expression levels of extracellular matrix (ECM) proteins and inhibited the proliferation and migration via suppression of the TGF-β1 pathway in rat hepatic stellate HSC-T6 cells. Moreover, the HH-F3 fraction decreased hepatic collagen content and reduced plasma AST, ALT, and γ-GT activities in a DEN-induced rat liver injury model, suggesting that GP/HH-F3 has hepatoprotective effects against DEN-induced liver fibrosis. Conclusion: These findings indicate that GP/HH-F3 may be a potential therapeutic agent for the treatment of liver fibrosis. The inhibition of TGF-β-mediated fibrogenesis may be a central mechanism by which GP/HH-F3 protects the liver from injury.


2011 ◽  
Vol 300 (2) ◽  
pp. G316-G326 ◽  
Author(s):  
Melania Scarpa ◽  
Alessia R. Grillo ◽  
Paola Brun ◽  
Veronica Macchi ◽  
Annalisa Stefani ◽  
...  

Following liver injury, the wound-healing process is characterized by hepatic stellate cell (HSC) activation from the quiescent fat-storing phenotype to a highly proliferative myofibroblast-like phenotype. Snail1 is a transcription factor best known for its ability to trigger epithelial-mesenchymal transition, to influence mesoderm formation during embryonic development, and to favor cell survival. In this study, we evaluated the expression of Snail1 in experimental and human liver fibrosis and analyzed its role in the HSC transdifferentiation process. Liver samples from patients with liver fibrosis and from mice treated by either carbon tetrachloride (CCl4) or thioacetamide (TAA) were evaluated for mRNA expression of Snail1. The transcription factor expression was investigated by immunostaining and real-time quantitative RT-PCR (qRT-PCR) on in vitro and in vivo activated murine HSC. Snail1 knockdown studies on cultured HSC and on CCl4-treated mice were performed by adenoviral delivery of short-hairpin RNA; activation-related genes were quantitated by real-time qRT-PCR and Western blotting. Snail1 mRNA expression resulted upregulated in murine experimental models of liver injury and in human hepatic fibrosis. In vitro studies showed that Snail1 is expressed by HSC and that its transcription is augmented in in vitro and in vivo activated HSC compared with quiescent HSC. At the protein level, we could observe the nuclear translocation of Snail1 in activated HSC. Snail1 knockdown resulted in the downregulation of activation-related genes both in vitro and in vivo. Our data support a role for Snail1 transcription factor in the hepatic wound-healing response and its involvement in the HSC transdifferentiation process.


2016 ◽  
Vol 40 (1-2) ◽  
pp. 49-61 ◽  
Author(s):  
Quanfang Huang ◽  
Chunhong Liang ◽  
Ling Wei ◽  
Jinlan Nie ◽  
Shengjuan Lu ◽  
...  

Background/Aims: Raf kinase inhibitory protein (RKIP) is closely associated with numerous tumors and participates in their development through regulating the growth, apoptosis, invasion and metastasis of tumor cells. However, the role of RKIP in chronic liver injury and particularly in liver fibrosis is still unclear. Methods: In the present study, hepatic fibrosis was induced by porcine serum (PS) in rats and primary hepatic stellate cells (HSCs) were isolated from rat livers. Moreover, locostatin was used to interfere with RKIP expression. Results: RKIP expression was significantly inhibited by locostatin in both liver tissues of rats and primary HSCs. Down-regulating RKIP expression resulted in serious liver injury, extensive accumulation of collagen, and significant increase in the levels of ALT, AST and TNF-α during liver fibrosis in rats. Moreover, down-regulating RKIP significantly promoted HSCs proliferation and colony formation in vitro. Reduced RKIP significantly increased the production of collagen and the level of α-SMA as well as the expression of MMP-1 and MMP-2 in both liver tissues and primary HSCs. Furthermore, down-regulating RKIP promoted the activation of the ERK and TLR4 signaling pathways. Conclusion: Our findings clearly indicate an inverse correlation between RKIP level and the degree of the liver injury and fibrosis. The decrease in RKIP expression may exacerbate chronic liver injury and liver fibrosis.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Sulaiman Shams ◽  
Sadia Mohsin ◽  
Ghazanfar Ali Nasir ◽  
Mohsin Khan ◽  
Shaheen N. Khan

Stem cells have opened a new avenue to treat liver fibrosis. We investigated in vitro and in vivo the effect of cytokine (HGF and FGF4) pretreated MSCs in reduction of CCl4liver injury. Mouse MSCs were pretreated with cytokines to improve their ability to reduce CCl4injury. In vitro we gave CCl4injury to mouse hepatocytes and cocultured it with untreated and cytokines pretreated MSCs. For in vivo study we labeled MSCs with PKH-26 and transplanted them into CCl4injured mice by direct injection into liver. In vitro data showed that cytokines pretreated MSCs significantly reduce LDH level and apoptotic markers in CCl4injured hepatocytes cocultured model. Furthermore the cytokines pretreated MSCs also improved cell viability and enhanced hepatic and antiapoptotic markers in injured hepatocytes cocultured model as compared to untreated MSCs. In vivo data in cytokines pretreated group demonstrated greater homing of MSCs in liver, restored glycogen storage, and significant reduction in collagen, alkaline phosphatase, and bilirubin levels. TUNEL assay and real time PCR also supported our hypothesis. Therefore, cytokines pretreated MSCs were shown to have a better therapeutic potential on reduction of liver injury. These results demonstrated the potential utility of this novel idea of cytokines pretreated MSCs for the treatment of liver fibrosis.


2017 ◽  
Vol 43 ◽  
pp. 227-235 ◽  
Author(s):  
Beyzagul Polat ◽  
Zekai Halici ◽  
Elif Cadirci ◽  
Emre Karakus ◽  
Yasin Bayir ◽  
...  

Author(s):  
Fanghui Chen ◽  
Le Sheng ◽  
Chenjie Xu ◽  
Jun Li ◽  
Ilyas Ali ◽  
...  

The dairy cattle suffer from severe liver dysfunction during the pathogenesis of ketosis. The Ufm1 conjugation system is crucial for liver development and homeostasis. Ufm1 binding protein (Ufbp1) is a putative Ufm1 target and an integral component, but its role in ketosis-induced liver injury is unclear so far. The purpose of this study is to explore the key role of Ufbp1 in liver fibrosis caused by ketosis in vivo and in vitro. Liver tissues were collected from ketotic cows and Ufbp1 conditional knockout (CKO) mice in vivo. However, Ufbp1–/– mouse embryonic fibroblast cells and Hela cells were used for in vitro validation. Subsequently, various assays were performed to reveal the underlying molecular mechanisms of the Ufbp1 protective effect. In this study, hepatic fibrosis, endoplasmic reticulum (ER) stress, and apoptosis were reported in the liver of ketotic cows, fibrotic markers (alpha-smooth muscle actin, Collagen1) and ER stress markers (glucose-regulated protein 78, CEBP homologous protein) were upregulated remarkably, and the apoptosis-related genes (Bcl2, Bax) were in line with expectations. Interestingly, Ufbp1 expression was almost disappeared, and Smad2/Smad3 protein was largely phosphorylated in the liver of ketotic cows, but Ufbp1 deletion caused Smad3 phosphorylation apparently, rather than Smad2, and elevated ER stress was observed in the CKO mice model. At the cellular level, Ufbp1 deficiency led to serious fibrotic and ER stress response, Smad3 was activated by phosphorylation significantly and then was translocated into the nucleus, whereas p-Smad2 was largely unaffected in embryonic fibroblast cells. Ufbp1 overexpression obviously suppressed Smad3 phosphorylation in Hela cells. Ufbp1 was found to be in full combination with Smad3 using endogenous immunoprecipitation. Taken together, our findings suggest that downregulation or ablation of Ufbp1 leads to Smad3 activation, elevated ER stress, and hepatocyte apoptosis, which in turn causes liver fibrosis. Ufbp1 plays a protective role in ketosis-induced liver injury.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiahuan Li ◽  
Xiaoling Deng ◽  
Shuhan Wang ◽  
Qianqian Jiang ◽  
Keshu Xu

Resolvin D1 (RvD1) was previously reported to relieve inflammation and liver damage in several liver diseases, but its potential role in liver fibrosis remains elusive. The aim of our study was to investigate the effects and underlying mechanisms of RvD1 in hepatic autophagy in liver fibrosis. In vivo, male C57BL/6 mice were intraperitoneally injected with 20% carbon tetrachloride (CCl4, 5 ml/kg) twice weekly for 6 weeks to establish liver fibrosis model. RvD1 (100 ng or 300 ng/mouse) was added daily in the last 2 weeks of the modeling period. In vitro, lipopolysaccharide (LPS)-activated LX-2 cells were co-treated with increasing concentrations (2.5–10 nM) of RvD1. The degree of liver injury was measured by detecting serum AST and ALT contents and H&E staining. Hepatic fibrosis was assessed by masson's trichrome staining and metavir scoring. The qRT-PCR, western blot, immunohistochemistry, and immunofluorescence were applied to liver tissues or LPS-activated LX-2 cells to explore the protective effects of RvD1 in liver fibrosis. Our findings reported that RvD1 significantly attenuated CCl4 induced liver injury and fibrosis by decreasing plasma AST and ALT levels, reducing collagen I and α-SMA accumulation and other pro-fibrotic genes (CTGF, TIMP-1 and Vimentin) expressions in mouse liver, restoring damaged histological architecture and improving hepatic fibrosis scores. In vitro, RvD1 also repressed the LPS induced LX-2 cells activation and proliferation. These significant improvements mainly attributed to the inhibiting effect of RvD1 on autophagy in the process of hepatic stellate cell (HSC) activation, as demonstrated by decreased ratio of LC3-II/I and elevated p62 after RvD1 treatment. In addition, using AZD5363 (an AKT inhibitor that activates autophagy) and AZD8055 (an mTOR inhibitor, another autophagy activator), we further verified that RvD1 suppressed autophagy-mediated HSC activation and alleviated CCl4 induced liver fibrosis partly through AKT/mTOR pathway. Overall, these results demonstrate that RvD1 treatment is expected to become a novel therapeutic strategy against liver fibrosis.


Sign in / Sign up

Export Citation Format

Share Document