scholarly journals Indigo Pulverata Levis (Chung-Dae, Persicaria tinctoria) Alleviates Atopic Dermatitis-like Inflammatory Responses In Vivo and In Vitro

2022 ◽  
Vol 23 (1) ◽  
pp. 553
Author(s):  
Ga-Yul Min ◽  
Ji-Hye Kim ◽  
Tae-In Kim ◽  
Won-Kyung Cho ◽  
Ju-Hye Yang ◽  
...  

Atopic dermatitis (AD) is a chronic inflammatory skin disease associated with a type 2 T helper cell (Th2) immune response. The IndigoPulverata Levis extract (CHD) is used in traditional Southeast Asian medicine; however, its beneficial effects on AD remain uninvestigated. Therefore, we investigated the therapeutic effects of CHD in 2,4-dinitrochlorobenzene (DNCB)-induced BALB/c mice and tumor necrosis factor (TNF)-α- and interferon gamma (IFN)-γ-stimulated HaCaT cells. We evaluated immune cell infiltration, skin thickness, and the serum IgE and TNF-α levels in DNCB-induced AD mice. Moreover, we measured the expression levels of pro-inflammatory cytokines, mitogen-activated protein kinase (MAPK), and the nuclear factor-kappa B (NF-κB) in the mice dorsal skin. We also studied the effect of CHD on the translocation of NF-κB p65 and inflammatory chemokines in HaCaT cells. Our in vivo results revealed that CHD reduced the dermis and epidermis thicknesses and inhibited immune cell infiltration. Furthermore, it suppressed the proinflammatory cytokine expression and MAPK and NF-κB phosphorylations in the skin tissue and decreased serum IgE and TNF-α levels. In vitro results indicated that CHD downregulated inflammatory chemokines and blocked NF-κB p65 translocation. Thus, we deduced that CHD is a potential drug candidate for AD treatment.

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e14532-e14532
Author(s):  
Joerg Wischhusen ◽  
Markus Haake ◽  
Neha Vashist ◽  
Sabrina Genßler ◽  
Kilian Wistuba-Hamprecht ◽  
...  

e14532 Background: Growth and differentiation factor 15 (GDF-15) is a divergent member of the TGF-β superfamily with low to absent expression in healthy tissue. GDF-15 has been linked to feto-maternal immune tolerance, to prevention of excessive immune cell infiltration during tissue damage, and to anorexia. Various major tumor types secrete high levels of GDF-15. In cancer patients, elevated GDF-15 serum levels correlate with poor prognosis and reduced overall survival (OS). Methods: Impact of a proprietary GDF-15 neutralizing antibody (CTL-002) regarding T cell trafficking was analyzed by whole blood adhesion assays, a HV18-MK melanoma-bearing humanized mouse model and a GDF-15-transgenic MC38 model. Additionally, patient GDF-15 serum levels were correlated with clinical response and overall survival in oropharyngeal squamous cell carcinoma (OPSCC) and melanoma brain metastases. Results: In whole blood cell adhesion assays GDF-15 impairs adhesion of T and NK cells to activated endothelial cells. Neutralization of GDF-15 by CTL-002 rescued T cell adhesion. In HV18-MK-bearing humanized mice CTL-002 induced a strong increase in TIL numbers. Subset analysis revealed an overproportional enrichment of T cells, in particular CD8+ T cells. As immune cell exclusion is detrimental for checkpoint inhibitor (CPI) therapy, a GDF-15-transgenic MC38 model was tested for anti-PD-1 therapy efficacy. In GDF-15 overexpressing MC38 tumors response to anti PD-1 therapy was reduced by 90% compared to wtMC38 tumors. Combining aPD-1 with CTL-002 resulted in 50% of the mice rejecting their GDF-15 overexpressing tumors. Clinically, inverse correlations of GDF-15 levels with CD8+ T cell infiltration were shown for HPV+ OPSCC and for melanoma brain metastases. GDF-15 serum levels were significantly higher in HPV- than in HPV+ OPSCC patient (p < 0.0001). Low GDF-15 levels corresponded to longer OS in both HPV- and HPV+ OPSCC. In two independent melanoma patient cohorts treated with nivolumab or pembrolizumab low baseline serum GDF-15 levels were predictive for clinical response to anti-PD1 treatment and superior OS. Bivariate analysis including LDH indicates that GDF-15 independently predicts poor survival in aPD-1 treated melanoma patients. Conclusions: Taken together our in vitro and in vivo data show that elevated GDF-15 levels block T-cell infiltration into tumor tissues. Neutralizing GDF-15 with CTL-002 restores the ability of T cells to extravasate blood vessels and enter tumor tissue both in vitro and in vivo. In melanoma, patients with higher GDF-15 levels have significantly shorter survival and are less likely to respond to anti-PD1 therapy. GDF-15 may thus serve as a new predictive biomarker for anti-PD1 response, but most importantly also represents a novel target for cancer immunotherapy to improve tumor immune cell infiltration and response to anti-PD1 therapy.


Antioxidants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 197
Author(s):  
Hien T.T. Ngo ◽  
Minzhe Fang ◽  
Eunson Hwang ◽  
Yoosung Kim ◽  
Bom Park ◽  
...  

Atopic dermatitis (AD) is a chronic, inflammatory skin disease that persists or repeatedly recurs in both childhood and adulthood. Urtica thunbergiana (UT) is an aroma herb with little-known pharmacological effects and anti-inflammatory activities against AD. This study investigated the immunomodulatory efficacy of 50% ethanol-extracted UT in necrosis factor-alpha/interferon-gamma (TNF-α/IFN-γ)-stimulated HaCaT cells in vitro and AD-Biostir-induced NC/Nga mice in vivo. The results showed that UT exhibits a dose-dependent increase in scavenged free radicals, reaching 76.0% ± 1.4% of scavenged 1,1-diphenyl-2-picrylhydrazyl at a concentration of 250 µg/mL. In addition, UT significantly downregulated the mRNA expression of the following pro-inflammatory cytokines and chemokines in TNF-α/IFN-γ-stimulated HaCaT cells: interleukin (IL)-6, IL-8, thymus- and activation-regulated chemokine, macrophage-derived chemokine, and regulated on activation normal T expressed and secreted. UT-treated HaCaT cells showed inhibition of the overexpression of chemokine-regulated signaling molecules, such as nuclear factor-kappa B, inhibitor of kappa B (IκBα), signal transducer and activator of transcription 1, and mitogen-activated protein kinases (MAPKs). UT dietary administration in AD-Biostir-induced NC/Nga mice treated and improved AD-like symptoms, such as scales, epidermal thickening, the dermatitis severity score, high trans-epidermal water loss, reduced skin hydration, increased mast cells, elevated serum immunoglobulin E levels, and an enlarged spleen. UT treatment inhibited the expression of phosphorylated forms of MAPKs, nuclear factor of activated T-cells 1, and regulator IκBα. It also upregulated filaggrin (FLG) production. Therefore, UT shows high anti-AD activity both in vitro and in vivo, and can be a useful anti-AD agent.


2021 ◽  
Vol 22 (14) ◽  
pp. 7393
Author(s):  
Tianheng Hou ◽  
Miranda Sin-Man Tsang ◽  
Lea Ling-Yu Kan ◽  
Peiting Li ◽  
Ida Miu-Ting Chu ◽  
...  

Atopic dermatitis (AD) represents a severe global burden on physical, physiological and mental health. Innate immune cell basophils are essential for provoking allergic inflammation in AD. However, the roles of novel immunoregulatory cytokine IL-37 in basophils remain elusive. We employed in vitro co-culture of human basophils and human keratinocyte HaCaT cells and an in vivo MC903-induced AD murine model to investigate the anti-inflammatory mechanism of IL-37. In the in vitro model, IL-37b significantly decreased Der p1-induced thymic stromal lymphopoietin (TSLP) overexpression in HaCaT cells and decreased the expression of TSLP receptor as well as basophil activation marker CD203c on basophils. IL-37 could also reduce Th2 cytokine IL-4 release from TSLP-primed basophils ex vivo. In the in vivo model, alternative depletion of basophils ameliorated AD symptoms and significantly lowered the Th2 cell and eosinophil populations in the ear and spleen of the mice. Blocking TSLP alleviated the AD-like symptoms and reduced the infiltration of basophils in the spleen. In CRISPR/Cas9 human IL-37b knock-in mice or mice with direct treatment by human IL-37b antibody, AD symptoms including ear swelling and itching were significantly alleviated upon MC903 challenge. Notably, IL-37b presence significantly reduced the basophil infiltration in ear lesions. In summary, IL-37b could regulate the TSLP-mediated activation of basophils and reduce the release of IL-4. The results, therefore, suggest that IL-37 may target TSLP-primed basophils to alleviate AD.


2020 ◽  
Vol 34 ◽  
pp. 205873842097489
Author(s):  
Jiang Wang ◽  
Bo Wang ◽  
Xin Lv ◽  
Yingjie Wang

Periodontitis is an inflammatory disease caused by host immune response, resulting in a loss of periodontium and alveolar bone. Immune cells, such as T cells and macrophages, play a critical role in the periodontitis onset. Halofuginone, a natural quinazolinone alkaloid, has been shown to possess anti-fibrosis, anti-cancer, and immunomodulatory properties. However, the effect of halofuginone on periodontitis has never been reported. In this study, a ligature-induced mice model of periodontitis was applied to investigate the potential beneficial effect of halofuginone on periodontitis. We demonstrated that the administration of halofuginone significantly reduced the expression levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) in vivo, and markedly suppressed immune cell infiltration into the infected sites. Furthermore, we also observed that halofuginone treatment blocked the T-helper 17 (Th17) cell differentiation in vivo and in vitro. We demonstrated for the first time that halofuginone alleviated the onset of periodontitis through reducing immune responses.


2021 ◽  
Vol 102 (10) ◽  
Author(s):  
Wisam-Hamzah Al Shujairi ◽  
Luke P. Kris ◽  
Kylie van der Hoek ◽  
Evangeline Cowell ◽  
Gustavo Bracho-Granado ◽  
...  

Viperin has antiviral function against many viruses, including dengue virus (DENV), when studied in cells in culture. Here, the antiviral actions of viperin were defined both in vitro and in a mouse in vivo model of DENV infection. Murine embryonic fibroblasts (MEFs) derived from mice lacking viperin (vip−/−) showed enhanced DENV infection, accompanied by increased IFN-β and induction of ISGs; IFIT1 and CXCL-10 but not IRF7, when compared to wild-type (WT) MEFs. In contrast, subcutaneous challenge of immunocompetent WT and vip−/− mice with DENV did not result in enhanced infection. Intracranial infection with DENV resulted in body weight loss and neurological disease with a moderate increase in mortality in vip−/− compared with WT mice, although this was not accompanied by altered brain morphology, immune cell infiltration or DENV RNA level in the brain. Similarly, DENV induction of IFN-β, IFIT1, CXCL-10, IRF7 and TNF-α was not significantly different in WT and vip−/− mouse brain, although there was a modest but significant increase in DENV induction of IL-6 and IfI27la in the absence of viperin. NanoString nCounter analysis confirmed no significant difference in induction of a panel of inflammatory genes in WT compared to vip−/− DENV-infected mouse brains. Further, polyI:C stimulation of bone marrow-derived macrophages (BMDMs) induced TNF-α, IFN-β, IL-6 and Nos-2, but responses were not different in BMDMs generated from WT or vip−/− mice. Thus, while there is significant evidence of anti-DENV actions of viperin in some cell types in vitro, for DENV infection in vivo a lack of viperin does not affect systemic or brain susceptibility to DENV or induction of innate and inflammatory responses.


2017 ◽  
Vol 86 (3) ◽  
Author(s):  
Steven T. Denham ◽  
Surbhi Verma ◽  
Raymond C. Reynolds ◽  
Colleen L. Worne ◽  
Joshua M. Daugherty ◽  
...  

ABSTRACTCryptococcus neoformansis a common environmental yeast and opportunistic pathogen responsible for 15% of AIDS-related deaths worldwide. Mortality primarily results from meningoencephalitis, which occurs when fungal cells disseminate to the brain from the initial pulmonary infection site. A keyC. neoformansvirulence trait is the polysaccharide capsule. Capsule shieldsC. neoformansfrom immune-mediated recognition and destruction. The main capsule component, glucuronoxylomannan (GXM), is found both attached to the cell surface and free in the extracellular space (as exo-GXM). Exo-GXM accumulates in patient serum and cerebrospinal fluid at microgram/milliliter concentrations, has well-documented immunosuppressive properties, and correlates with poor patient outcomes. However, it is poorly understood whether exo-GXM release is regulated or the result of shedding during normal capsule turnover. We demonstrate that exo-GXM release is regulated by environmental cues and inversely correlates with surface capsule levels. We identified genes specifically involved in exo-GXM release that do not alter surface capsule thickness. The first mutant, theliv7Δ strain, released less GXM than wild-type cells when capsule was not induced. The second mutant, thecnag_00658Δ strain, released more exo-GXM under capsule-inducing conditions. Exo-GXM release observedin vitrocorrelated with polystyrene adherence, virulence, and fungal burden during murine infection. Additionally, we found that exo-GXM reduced cell size and capsule thickness under capsule-inducing conditions, potentially influencing dissemination. Finally, we demonstrated that exo-GXM prevents immune cell infiltration into the brain during disseminated infection and highly inflammatory intracranial infection. Our data suggest that exo-GXM performs a distinct role from capsule GXM during infection, altering cell size and suppressing inflammation.


Endocrinology ◽  
2015 ◽  
Vol 156 (10) ◽  
pp. 3610-3624 ◽  
Author(s):  
Gabriele Schoiswohl ◽  
Maja Stefanovic-Racic ◽  
Marie N. Menke ◽  
Rachel C. Wills ◽  
Beth A. Surlow ◽  
...  

Emerging evidence suggests that impaired regulation of adipocyte lipolysis contributes to the proinflammatory immune cell infiltration of metabolic tissues in obesity, a process that is proposed to contribute to the development and exacerbation of insulin resistance. To test this hypothesis in vivo, we generated mice with adipocyte-specific deletion of adipose triglyceride lipase (ATGL), the rate-limiting enzyme catalyzing triacylglycerol hydrolysis. In contrast to previous models, adiponectin-driven Cre expression was used for targeted ATGL deletion. The resulting adipocyte-specific ATGL knockout (AAKO) mice were then characterized for metabolic and immune phenotypes. Lean and diet-induced obese AAKO mice had reduced adipocyte lipolysis, serum lipids, systemic lipid oxidation, and expression of peroxisome proliferator-activated receptor alpha target genes in adipose tissue (AT) and liver. These changes did not increase overall body weight or fat mass in AAKO mice by 24 weeks of age, in part due to reduced expression of genes involved in lipid uptake, synthesis, and adipogenesis. Systemic glucose and insulin tolerance were improved in AAKO mice, primarily due to enhanced hepatic insulin signaling, which was accompanied by marked reduction in diet-induced hepatic steatosis as well as hepatic immune cell infiltration and activation. In contrast, although adipocyte ATGL deletion reduced AT immune cell infiltration in response to an acute lipolytic stimulus, it was not sufficient to ameliorate, and may even exacerbate, chronic inflammatory changes that occur in AT in response to diet-induced obesity.


2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Yuanyuan Feng ◽  
Xinfang Tang ◽  
Changcheng Li ◽  
Ying Su ◽  
Xiaoyu Wang ◽  
...  

Objective. ARID1A has been discovered as a potential cancer biomarker. But its role in hepatocellular carcinoma (HCC) is subject to considerable dispute. Methods. The relationship between ARID1A and clinical factors was investigated. Clinicopathological variables related to overall survival in HCC subjects were identified using Cox and Kaplan–Meier studies. The connection between immune infiltrating cells and ARID1A expression was investigated using the tumor Genome Atlas (TCGA) dataset for gene set enrichment analysis (GSEA). Finally, a cell experiment was used to confirm it. Results. The gender and cancer topography (T) categorization of HCC were linked to increased ARID1A expression. Participants with advanced levels of ARID1A expression had a worse prognosis than someone with lower levels. ARID1A was shown to be a risk indicator of overall survival on its own. ARID1A expression is inversely proportional to immune cell infiltration. In vitro, decreasing ARID1A expression substantially slowed the cell cycle and decreased HCC cell proliferation, migration, and invasion. Conclusion. The expression of ARID1A could be used to predict the outcome of HCC. It is closely related to tumor immune cell infiltration.


Nutrients ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 573 ◽  
Author(s):  
Hye Yang ◽  
Hyunkyoung Lee ◽  
Jong-Hyun Kim ◽  
Il-Hwa Hong ◽  
Du Hwang ◽  
...  

Rumex japonicus Houtt. (RJ) is traditionally used in folk medicines to treat patients suffering from skin disease in Korea and other parts of East Asia. However, the beneficial effect of RJ extract on atopic dermatitis (AD) has not been thoroughly examined. Therefore, this study aimed to investigate the anti-inflammatory effects of RJ on AD in vitro and in vivo. Treatment with RJ inhibited the phosphorylation of mitogen-activated protein kinase (MAPK) as well as the activation of nuclear factor-kappa B (NF-κB) in tumor necrosis factor-α (TNF-α) stimulated in HaCaT cells. The five-week-old Balb/c mice were used as an AD-like mouse model by treating them with 1-chloro-2, 4-dinitrobenzene (DNCB). Topical administration of RJ to DNCB-treated mice significantly reduced clinical dermatitis severity, epidermal thickness, and decreased mast cell and eosinophil infiltration into skin and ear tissue. These results suggest that RJ inhibits the development of AD-like skin lesions by regulating the skin inflammation responses in HaCaT cells and Balb/c mice. Thus, RJ may be a potential therapeutic agent for AD.


Sign in / Sign up

Export Citation Format

Share Document