Influence of solar incidence angle on single-image photoclinometry for precision lunar topographic mapping

2021 ◽  
Vol 182 ◽  
pp. 208-227
Author(s):  
Wai Chung Liu ◽  
Bo Wu
2018 ◽  
Vol 10 (8) ◽  
pp. 1294 ◽  
Author(s):  
Gerardo Di Martino ◽  
Alessio Di Simone ◽  
Daniele Riccio

In this paper, we propose a range slope estimation procedure from single synthetic aperture radar (SAR) images with both methodological and applicative innovations. The retrieval algorithm is based on an analytical linearized direct model, which relates the SAR intensity data to the range local slopes and encompasses both a surface model and an electromagnetic scattering model. Scene topography is described via fractal geometry, whereas the Small Perturbation Method is adopted to represent the scattering behavior of the surface. The range slope map is then used to estimate the surface topography and the local incidence angle map. For topographic mapping applications, also referred to as shape from shading, a regularization procedure is derived to recover the azimuth local slope and reduce distortions. Then we present a new intriguing application of the inversion procedure in the field of SAR despeckling. Proposed techniques and high-level products are tested in a wide series of experiments, where the algorithms are applied to both simulated (canonical) and actual SAR images. It is proved that the proposed range slope retrieval technique can (1) provide an estimate of the surface shape, with overall better performance w.r.t. typical models used in this field and (2) be useful in advanced despeckling techniques.


Author(s):  
David C. Joy

Electron channeling patterns (ECP) were first found by Coates (1967) while observing a large bulk, single crystal of silicon in a scanning electron microscope. The geometric pattern visible was shown to be produced as a result of the changes in the angle of incidence, between the beam and the specimen surface normal, which occur when the sample is examined at low magnification (Booker, Shaw, Whelan and Hirsch 1967).A conventional electron diffraction pattern consists of an angularly resolved intensity distribution in space which may be directly viewed on a fluorescent screen or recorded on a photographic plate. An ECP, on the other hand, is produced as the result of changes in the signal collected by a suitable electron detector as the incidence angle is varied. If an integrating detector is used, or if the beam traverses the surface at a fixed angle, then no channeling contrast will be observed. The ECP is thus a time resolved electron diffraction effect. It can therefore be related to spatially resolved diffraction phenomena by an application of the concepts of reciprocity (Cowley 1969).


Author(s):  
Mark Denker ◽  
Jennifer Wall ◽  
Mark Ray ◽  
Richard Linton

Reactive ion beams such as O2+ and Cs+ are used in Secondary Ion Mass Spectrometry (SIMS) to analyze solids for trace impurities. Primary beam properties such as energy, dose, and incidence angle can be systematically varied to optimize depth resolution versus sensitivity tradeoffs for a given SIMS depth profiling application. However, it is generally observed that the sputtering process causes surface roughening, typically represented by nanometer-sized features such as cones, pits, pyramids, and ripples. A roughened surface will degrade the depth resolution of the SIMS data. The purpose of this study is to examine the relationship of the roughness of the surface to the primary ion beam energy, dose, and incidence angle. AFM offers the ability to quantitatively probe this surface roughness. For the initial investigations, the sample chosen was <100> silicon, and the ion beam was O2+.Work to date by other researchers typically employed Scanning Tunneling Microscopy (STM) to probe the surface topography.


Author(s):  
Max T. Otten ◽  
Wim M.J. Coene

High-resolution imaging with a LaB6 instrument is limited by the spatial and temporal coherence, with little contrast remaining beyond the point resolution. A Field Emission Gun (FEG) reduces the incidence angle by a factor 5 to 10 and the energy spread by 2 to 3. Since the incidence angle is the dominant limitation for LaB6 the FEG provides a major improvement in contrast transfer, reducing the information limit to roughly one half of the point resolution. The strong improvement, predicted from high-resolution theory, can be seen readily in diffractograms (Fig. 1) and high-resolution images (Fig. 2). Even if the information in the image is limited deliberately to the point resolution by using an objective aperture, the improved contrast transfer close to the point resolution (Fig. 1) is already worthwhile.


VASA ◽  
2015 ◽  
Vol 44 (2) ◽  
pp. 122-128 ◽  
Author(s):  
Mandy Becker ◽  
Tom Schilling ◽  
Olga von Beckerath ◽  
Knut Kröger

Background: To clarify the clinical use of sonography for differentiation of edema we tried to answer the question whether a group of doctors can differentiate lymphedema from cardiac, hepatic or venous edema just by analysing sonographic images of the edema. Patients and methods: 38 (70 ± 12 years, 22 (58 %) females) patients with lower limb edema were recruited according the clinical diagnosis: 10 (26 %) lymphedema, 16 (42 %) heart insufficiency, 6 (16 %) venous disorders, 6 (16 %) chronic hepatic disease. Edema was depicted sonographically at the most affected leg in a standardised way at distal and proximal calf. 38 sets of images were anonymised and send to 5 experienced doctors. They were asked whether they can see criteria for lymphedema: 1. anechoic gaps, 2. horizontal gaps and 3. echoic rims. Results: Accepting an edema as lymphedema if only one doctor sees at least one of the three criteria for lymphatic edema on each single image all edema would be classified as lymphatic. Accepting lymphedema only if all doctors see at least one of the three criteria on the distal image of the same patient 80 % of the patients supposed to have lymphedema are classified as such, but also the majority of cardiac, venous and hepatic edema. Accepting lymphedema only if all doctors see all three criteria on the distal image of the same patients no edema would be classified as lymphatic. In addition we separated patients by Stemmers’ sign in those with positive and negative sign. The interpretation of the images was not different between both groups. Conclusions: Our analysis shows that it is not possible to differentiate lymphedema from other lower limb edema sonographically.


2012 ◽  
Vol 34 (3) ◽  
pp. 169-184 ◽  
Author(s):  
Hoang Thi Bich Ngoc

Vertical axis wind turbine technology has been applied last years, very long after horizontal axis wind turbine technology. Aerodynamic problems of vertical axis wind machines are discussible. An important problem is the determination of the incidence law in the interaction between wind and rotor blades. The focus of the work is to establish equations of the incidence depending on the blade azimuth, and to solve them. From these results, aerodynamic torques and power can be calculated. The incidence angle is a parameter of velocity triangle, and both the factors depend not only on the blade azimuth but also on the ratio of rotational speed and horizontal speed. The built computational program allows theoretically selecting the relationship of geometric parameters of wind turbine in accordance with requirements on power, wind speed and installation conditions.


2020 ◽  
Vol 2020 (1) ◽  
pp. 74-77
Author(s):  
Simone Bianco ◽  
Luigi Celona ◽  
Flavio Piccoli

In this work we propose a method for single image dehazing that exploits a physical model to recover the haze-free image by estimating the atmospheric scattering parameters. Cycle consistency is used to further improve the reconstruction quality of local structures and objects in the scene as well. Experimental results on four real and synthetic hazy image datasets show the effectiveness of the proposed method in terms of two commonly used full-reference image quality metrics.


Sign in / Sign up

Export Citation Format

Share Document