Behavior of reinforced concrete deep beam with web openings strengthened with (CFRP) sheet

Structures ◽  
2020 ◽  
Vol 26 ◽  
pp. 785-800 ◽  
Author(s):  
Waleed A. Jasim ◽  
Yazan B. Abu Tahnat ◽  
Abdulsamee M. Halahla
Author(s):  
Elsayed Ismail ◽  
Mohamed S. Issa ◽  
Khaled Elbadry

Abstract Background A series of nonlinear finite element (FE) analyses was performed to evaluate the different design approaches available in the literature for design of reinforced concrete deep beam with large opening. Three finite element models were developed and analyzed using the computer software ATENA. The three FE models of the deep beams were made for details based on three different design approaches: (Kong, F.K. and Sharp, G.R., Magazine of Concrete Res_30:89-95, 1978), (Mansur, M. A., Design of reinforced concrete beams with web openings, 2006), and Strut and Tie method (STM) as per ACI 318-14 (ACI318 Committee, Building Code Requirements for Structural Concrete (ACI318-14), 2014). Results from the FE analyses were compared with the three approaches to evaluate the effect of different reinforcement details on the structural behavior of transfer deep beam with large opening. Results The service load deflection is the same for the three models. The stiffnesses of the designs of (Mansur, M. A., Design of reinforced concrete beams with web openings, 2006) and STM reduce at a load higher than the ultimate design load while the (Kong, F.K. and Sharp, G.R., Magazine of Concrete Res_30:89-95, 1978) reduces stiffness at a load close to the ultimate design load. The deep beam designed according to (Mansur, M. A., Design of reinforced concrete beams with web openings, 2006) model starts cracking at load higher than the beam designed according to (Kong, F.K. and Sharp, G.R., Magazine of Concrete Res_30:89-95, 1978) method. The deep beam detailed according to (Kong, F.K. and Sharp, G.R., Magazine of Concrete Res_30:89-95, 1978) and (Mansur, M. A., Design of reinforced concrete beams with web openings, 2006) failed due to extensive shear cracks. The specimen detailed according to STM restores its capacity after initial failure. The three models satisfy the deflection limit. Conclusion It is found that the three design approaches give sufficient ultimate load capacity. The amount of reinforcement given by both (Mansur, M. A., Design of reinforced concrete beams with web openings, 2006) and (Kong, F.K. and Sharp, G.R., Magazine of Concrete Res_30:89-95, 1978) is the same. The reinforcement used by the STM method is higher than the other two methods. Additional reinforcement is needed to limit the crack widths. (Mansur, M. A., Design of reinforced concrete beams with web openings, (2006)) method gives lesser steel reinforcement requirement and higher failure load compared to the other two methods.


2019 ◽  
Vol 5 (1) ◽  
pp. 209 ◽  
Author(s):  
Waleed A. Jasim ◽  
Abbas A. Allawi ◽  
Nazar Kamil Ali Oukaili

This paper presents an experimental and numerical study which was carried out to examine the influence of the size and the layout of the web openings on the load carrying capacity and the serviceability of reinforced concrete deep beams. Five full-scale simply supported reinforced concrete deep beams with two large web openings created in shear regions were tested up to failure. The shear span to overall depth ratio was (1.1). Square openings were located symmetrically relative to the midspan section either at the midpoint or at the interior boundaries of the shear span. Two different side dimensions for the square openings were considered, mainly, (200) mm and (230) mm. The strength results proved that the shear capacity of the deep beam is governed by the size and location of web openings. The experimental results indicated that the reduction of the shear capacity may reach (66%). ABAQUS finite element software program was used for simulation and analysis. Numerical analyses provided un-conservative estimates for deep beam load carrying capacity in the range between (5-21%). However, the maximum scatter of the finite element method predictions for first diagonal and first flexural cracking loads was not exceeding (17%). Also, at service load the numerical of midspan deflection was greater than the experimental values by (9-18%).


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2804
Author(s):  
Nurul Izzati Rahim ◽  
Bashar S. Mohammed ◽  
Amin Al-Fakih ◽  
M. M. A. Wahab ◽  
M. S. Liew ◽  
...  

Deep beams are more susceptible to shear failure, and therefore reparation is a crucial for structural reinforcements. Shear failure is structural concrete failure in nature. It generally occurs without warning; however, it is acceptable for the beam to fail in bending but not in shear. The experimental study presented the structural behavior of the deep beams of reinforced concrete (RC) that reinforces the web openings with externally connected carbon fiber reinforced polymer (CFRP) composite in the shear zone. The structural behavior includes a failure mode, and cracking pattern, load deflection responses, stress concentration and the reinforcement factor were investigated. A total of nine reinforced concrete deep beams with openings strengthened with CFRP and one control beam without an opening have been cast and tested under static four-point bending load till failure. The experimental results showed that the increase the size of the opening causes an increase in the shear strength reduction by up to 30%. Therefore, the larger the openings, the lower the capability of load carriage, in addition to an increase in the number of CFRP layers that could enhance the load carrying capacity. Consequently, utilization of the CFRP layer wrapping technique strengthened the shear behavior of the reinforced concrete deep beams from about 10% to 40%. It was concluded that the most effective number of CFRP layers for the deep beam with opening sizes of 150 mm and 200 mm were two layers and three layers, respectively.


2021 ◽  
pp. 136943322110015
Author(s):  
Akram S. Mahmoud ◽  
Ziadoon M. Ali

When glass fibre-reinforced polymer (GFRP) bar splices are used in reinforced concrete sections, they affect the structural performance in two different ways: through the stress concentration in the section, and through the configuration of the GFRP–concrete bond. This study experimentally investigated a new method for increasing the bond strength of a GFRP lap (two GFRP bars connected together) using a carbon fibre-reinforced polymer (CFRP) sheet coated in epoxy resin. A new splicing method was investigated to quantify the effect of the bar surface bond on the development length, with reinforced concrete beams cast with laps in the concrete reinforcing bars at a known bending span length. Specimens were tested in four-point flexure tests to assess the strength capacity and failure mode. The results were summarised and compared within a standard lap made according to the ACI 318 specifications. The new method for splicing was more efficient for GFRP splice laps than the standard lap method. It could also be used for head-to-head reinforcement bar splices with the appropriate CFRP lapping sheets.


2021 ◽  
Vol 245 ◽  
pp. 112951
Author(s):  
Liu Jin ◽  
Yushuang Lei ◽  
Wenxuan Yu ◽  
Xiuli Du

2012 ◽  
Vol 40 ◽  
pp. 90-102 ◽  
Author(s):  
A. Ahmed ◽  
M.M. Fayyadh ◽  
S. Naganathan ◽  
K. Nasharuddin

2020 ◽  
Vol 1002 ◽  
pp. 604-614
Author(s):  
Hayder Hussein H. Kammona ◽  
Muhammad Abed Attiya ◽  
Qasim M. Shakir

This study simulates a procedure of rehabilitation of reinforced concrete beams with the aid of ANSYS 17 software. In this work, the BIRTH and DEATH procedure (in ANSYS) was adopted to model the post-repairing stage. This aspect has rarely been considered by previous studies that utilized a carbon fiber reinforced polymer (CFRP) sheet when retrofitting. To verify the suggested technique, six specimens were analyzed with two values of shear span-to-depth ratios (3 and 4) and three spaces of CFRP sheets (100mm, 150mm and 200mm). The effect of the repairing process on the structural performance of the retrofitted beam is also investigated.It is found that the suggested technique yielded a good agreement with the experimental results and the maximum differences in the failure loads between the numerical and experimental results were 10% and 4% for shear span-to-depth ratios of 3 and 4, respectively. It was also ascertained that upgrading reinforced concrete members within the early stages of loading showed a better enhancement in the loading capacity compared to upgrading reinforced concrete members close to the juncture of failure.


Structures ◽  
2020 ◽  
Vol 27 ◽  
pp. 506-524 ◽  
Author(s):  
Ata El-Kareim ◽  
Ahmed Arafa ◽  
Amal Hassanin ◽  
Mohamed Atef ◽  
Ahmed Saber

2020 ◽  
Vol 249 ◽  
pp. 112561 ◽  
Author(s):  
Ceyhun Aksoylu ◽  
Şakir Yazman ◽  
Yasin Onuralp Özkılıç ◽  
Lokman Gemi ◽  
Musa Hakan Arslan

Sign in / Sign up

Export Citation Format

Share Document