Microstructure and mechanical properties of rapidly solidified/powder metallurgy Mg–6Zn and Mg–6Zn–5Ca at room and elevated temperatures

2013 ◽  
Vol 560 ◽  
pp. 161-166 ◽  
Author(s):  
Tao Zhou ◽  
Mingbo Yang ◽  
Zhiming Zhou ◽  
Jianjun Hu ◽  
Zhenhua Chen
2021 ◽  
pp. 100184
Author(s):  
Gyanendra Bhatta ◽  
Luis De Los Santos Valladares ◽  
Xinggang Liu ◽  
Zhaojun Ma ◽  
A. Bustamante Domínguez ◽  
...  

2015 ◽  
Vol 651-653 ◽  
pp. 677-682 ◽  
Author(s):  
Anatoliy Popovich ◽  
Vadim Sufiiarov ◽  
Evgenii Borisov ◽  
Igor Polozov

The article presents results of a study of phase composition and microstructure of initial material and samples obtained by selective laser melting of titanium-based alloy, as well as samples after heat treatment. The effect of heat treatment on microstructure and mechanical properties of specimens was shown. It was studied mechanical behavior of manufactured specimens before and after heat treatment at room and elevated temperatures as well. The heat treatment allows obtaining sufficient mechanical properties of material at room and elevated temperatures such as increase in ductility of material. The fractography of samples showed that they feature ductile fracture with brittle elements.


Author(s):  
Md Mehtab Alam and B.S Motgi

The paper deals with detailed study on microstructure and mechanical properties of aluminum 7068 reinforced with fly ash and silicon carbide by powder metallurgy, aluminum 7068, silicon carbide and fly ash were taken in powder form of required size and mixed together in varying proportion according to specification and compacted with pressure of 400MPa using hydraulic press to make samples and then samples were sintered at 600°c for 2 hours, the samples were tested for density, compressive strength, hardness and microstructure was analyzed using scanning electron microscope, energy dispersive x-ray study was carried out in order to confirm presence of silicon carbide and fly ash in aluminum matrix.


Sign in / Sign up

Export Citation Format

Share Document