Interface configuration stability and interfacial energy for the β″ phase in Al–Mg–Si as examined with a first principles based hierarchical multi-scale scheme

2014 ◽  
Vol 591 ◽  
pp. 329-336 ◽  
Author(s):  
F.J.H. Ehlers ◽  
S. Dumoulin
Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 941
Author(s):  
Zhanyong Zhao ◽  
Shijie Chang ◽  
Jie Wang ◽  
Peikang Bai ◽  
Wenbo Du ◽  
...  

The bonding strength of a Gr/Mg2Si interface was calculated by first principles. Graphene can form a stable, completely coherent interface with Mg2Si. When the (0001) Gr/(001) Mg2Si crystal plane is combined, the mismatch degree is 5.394%, which conforms to the two-dimensional lattice mismatch theory. At the interface between Gr/Mg2Si, chemical bonds were not formed, there was only a strong van der Waals force; the interfaces composed of three low index surfaces (001), (011) and (111) of Mg2Si and Gr (0001) have smaller interfacial adhesion work and larger interfacial energy, the interfacial energy of Gr/Mg2Si is much larger than that of α-Al/Al melt and Gr/Al interfacial (0.15 J/m2, 0.16 J/m2), and the interface distance of a stable interface is larger than the bond length of a chemical bond. The interface charge density difference diagram and density of states curve show that there is only strong van der Waals force in a Gr/Mg2Si interface. Therefore, when the Gr/AlSi10Mg composite is stressed and deformed, the Gr/Mg2Si interface in the composite is easy to separate and become the crack propagation source. The Gr/Mg2Si interface should be avoided in the preparation of Gr/AlSi10Mg composite.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Salloom ◽  
S. A. Mantri ◽  
R. Banerjee ◽  
S. G. Srinivasan

AbstractFor decades the poor mechanical properties of Ti alloys were attributed to the intrinsic brittleness of the hexagonal ω-phase that has fewer than 5-independent slip systems. We contradict this conventional wisdom by coupling first-principles and cluster expansion calculations with experiments. We show that the elastic properties of the ω-phase can be systematically varied as a function of its composition to enhance both the ductility and strength of the Ti-alloy. Studies with five prototypical β-stabilizer solutes (Nb, Ta, V, Mo, and W) show that increasing β-stabilizer concentration destabilizes the ω-phase, in agreement with experiments. The Young’s modulus of ω-phase also decreased at larger concentration of β-stabilizers. Within the region of ω-phase stability, addition of Nb, Ta, and V (Group-V elements) decreased Young’s modulus more steeply compared to Mo and W (Group-VI elements) additions. The higher values of Young’s modulus of Ti–W and Ti–Mo binaries is related to the stronger stabilization of ω-phase due to the higher number of valence electrons. Density of states (DOS) calculations also revealed a stronger covalent bonding in the ω-phase compared to a metallic bonding in β-phase, and indicate that alloying is a promising route to enhance the ω-phase’s ductility. Overall, the mechanical properties of ω-phase predicted by our calculations agree well with the available experiments. Importantly, our study reveals that ω precipitates are not intrinsically embrittling and detrimental, and that we can create Ti-alloys with both good ductility and strength by tailoring ω precipitates' composition instead of completely eliminating them.


2008 ◽  
Vol 103 (12) ◽  
pp. 123708 ◽  
Author(s):  
R. R. Wixom ◽  
J. F. Browning ◽  
C. S. Snow ◽  
P. A. Schultz ◽  
D. R. Jennison

2018 ◽  
Vol 114 ◽  
pp. 255-266 ◽  
Author(s):  
Antonio Rodríguez-Hidalgo ◽  
Carmen Peláez-Moreno ◽  
Ascensión Gallardo-Antolín

2020 ◽  
Vol 10 (17) ◽  
pp. 5847-5855
Author(s):  
Minttu M. Kauppinen ◽  
Marko M. Melander ◽  
Karoliina Honkala

Kinetic and thermodynamic stability of single-atom and nanocluster catalysts is addressed under reaction conditions within a DFT-parametrised multi-scale thermodynamic framework combining atomistic, non-equilibrium, and nanothermodynamics.


Sign in / Sign up

Export Citation Format

Share Document