scholarly journals Laser Acupuncture Improves Behavioral Disorders and Brain Oxidative Stress Status in the Valproic Acid Rat Model of Autism

2015 ◽  
Vol 8 (4) ◽  
pp. 183-191 ◽  
Author(s):  
Jurairat Khongrum ◽  
Jintanaporn Wattanathorn
2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Nartnutda Morakotsriwan ◽  
Jintanaporn Wattanathorn ◽  
Woranan Kirisattayakul ◽  
Kowit Chaisiwamongkol

Due to the crucial role of oxidative stress on the pathophysiology of autism and the concept of synergistic effect, the benefit of the combined extract of purple rice and silkworm pupae (AP1) for autism disorder was the focus. Therefore, we aimed to determine the effect of AP1 on autistic-like behaviors, oxidative stress status, and histopathological change of cerebellum in valproic acid (VPA) rat model of autism. VPA was injected on postnatal day (PND) 14 and the animals were orally given AP1 at doses of 50, 100, and 200 mg·kg−1BW between PND 14 and PND 40. The autism-like behaviors were analyzed via hot-plate, rotarod, elevated plus-maze, learning, memory, and social behavior tests. Oxidative stress and the histological change in the cerebellum were assessed at the end of study. AP1 treated rats improved behaviors in all tests except that in hot-plate test. The improvement of oxidative stress and Purkinje cell loss was also observed in the cerebellum of VPA-treated rats. Our data suggest that AP1 partially reduced autism-like behaviors by improving oxidative stress and Purkinje cell loss. Further research is required to identify the active ingredients in AP1 and gender difference effect.


Medicina ◽  
2019 ◽  
Vol 55 (12) ◽  
pp. 776 ◽  
Author(s):  
Ioana-Miruna Balmus ◽  
Radu Lefter ◽  
Alin Ciobica ◽  
Sabina Cojocaru ◽  
Samson Guenne ◽  
...  

Background and objectives: Oxidative stress and inflammation have been implicated in the etiology of irritable bowel syndrome (IBS), a common gastrointestinal functional disease. This study aimed to further characterize the contention-stress rat model by exploring a possible correlation between oxidative stress markers measured in brain tissues with behavioral components of the aforementioned model. Thus, it is hereby proposed a possible IBS animal model relevant to pharmacological and complementary medicine studies. Materials and Methods: Wild-type male Wistar rats (n = 5/group) were chronically exposed to 6-hour/day contention, consisting of isolating the animals in small, vital space-granting plastic devices, for seven consecutive days. Following contention exposure, temporal lobes were extracted and subjected to biochemical analyses to assess oxidative stress-status parameters. Results: Our results show increased brain oxidative stress in contention-stress rat model: decreased superoxide dismutase and glutathione peroxidase activities and increased malondialdehyde production in the IBS group, as compared to the control group. Furthermore, the biochemical ratios which are used to evaluate the effectiveness of an antioxidant system on oxidative stress could be described in this model. Conclusions: The correlations between the behavioral patterns and biochemical oxidative stress features could suggest that this may be a complex model, which can successfully mimic IBS symptomatology further providing evidence of a strong connection between the digestive system, enteric nervous system, and the central nervous system.


Medicina ◽  
2020 ◽  
Vol 56 (6) ◽  
pp. 267
Author(s):  
Radu Lefter ◽  
Alin Ciobica ◽  
Iulia Antioch ◽  
Daniela Carmen Ababei ◽  
Luminita Hritcu ◽  
...  

Background and objectives: The hormone oxytocin (OXT) has already been reported in both human and animal studies for its promising therapeutic potential in autism spectrum disorder (ASD), but the comparative effectiveness of various administration routes, whether central or peripheral has been insufficiently studied. In the present study, we examined the effects of intranasal (IN) vs. intraperitoneal (IP) oxytocin in a valproic-acid (VPA) autistic rat model, focusing on cognitive and mood behavioral disturbances, gastrointestinal transit and central oxidative stress status. Materials and Methods: VPA prenatally-exposed rats (500 mg/kg; age 90 days) in small groups of 5 (n = 20 total) were given OXT by IP injection (10 mg/kg) for 8 days consecutively or by an adapted IN pipetting protocol (12 IU/kg, 20 μL/day) for 4 consecutive days. Behavioral tests were performed during the last three days of OXT treatment, and OXT was administrated 20 minutes before each behavioral testing for each rat. Biochemical determination of oxidative stress markers in the temporal area included superoxide dismutase (SOD), glutathione peroxidase (GPx) and malondialdehyde (MDA). A brief quantitative assessment of fecal discharge over a period of 24 hours was performed at the end of the OXT treatment to determine differences in intestinal transit. Results: OXT improved behavioral and oxidative stress status in both routes of administration, but IN treatment had significantly better outcome in improving short-term memory, alleviating depressive manifestations and mitigating lipid peroxidation in the temporal lobes. Significant correlations were also found between behavioral parameters and oxidative stress status in rats after OXT administration. The quantitative evaluation of the gastrointestinal (GI) transit indicated lower fecal pellet counts in the VPA group and homogenous average values for the control and both OXT treated groups. Conclusions: The data from the present study suggest OXT IN administration to be more efficient than IP injections in alleviating autistic cognitive and mood dysfunctions in a VPA-induced rat model. OXT effects on the cognitive and mood behavior of autistic rats may be associated with its effects on oxidative stress. Additionally, present results provide preliminary evidence that OXT may have a balancing effect on gastrointestinal motility.


Cytokine ◽  
2017 ◽  
Vol 96 ◽  
pp. 173-184 ◽  
Author(s):  
Rahimeh Bargi ◽  
Fereshteh Asgharzadeh ◽  
Farimah Beheshti ◽  
Mahmoud Hosseini ◽  
Hamid Reza Sadeghnia ◽  
...  

2011 ◽  
Vol 49 (04) ◽  
pp. 268-276 ◽  
Author(s):  
S. Ounjaijean ◽  
T. Westermarck ◽  
M. Partinen ◽  
E. Plonka-Poltorak ◽  
P. Kaipainen ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1519 ◽  
Author(s):  
Razvan Stefan Boiangiu ◽  
Ion Brinza ◽  
Monica Hancianu ◽  
Ilkay Erdogan Orhan ◽  
Gokcen Eren ◽  
...  

The present study investigated the capability of an essential oil mix (MO: 1% and 3%) in ameliorating amnesia and brain oxidative stress in a rat model of scopolamine (Sco) and tried to explore the underlying mechanism. The MO was administered by inhalation to rats once daily for 21 days, while Sco (0.7 mg/kg) treatment was delivered 30 min before behavioral tests. Donepezil (DP: 5 mg/kg) was used as a positive reference drug. The cognitive-enhancing effects of the MO in the Sco rat model were assessed in the Y-maze, radial arm maze (RAM), and novel object recognition (NOR) tests. As identified by gas chromatography–mass spectrometry (GC–MS), the chemical composition of the MO is comprised by limonene (91.11%), followed by γ-terpinene (2.02%), β-myrcene (1.92%), β-pinene (1.76%), α-pinene (1.01%), sabinene (0.67%), linalool (0.55%), cymene (0.53%), and valencene (0.43%). Molecular interactions of limonene as the major compound in MO with the active site of butyrylcholinesterase (BChE) was explored via molecular docking experiments, and Van der Waals (vdW) contacts were observed between limonene and the active site residues SER198, HIS438, LEU286, VAL288, and PHE329. The brain oxidative status and acetylcholinesterase (AChE) and BChE inhibitory activities were also determined. MO reversed Sco-induced memory deficits and brain oxidative stress, along with cholinesterase inhibitory effects, which is an important mechanism in the anti-amnesia effect. Our present findings suggest that MO ameliorated memory impairment induced by Sco via restoration of the cholinergic system activity and brain antioxidant status.


Sign in / Sign up

Export Citation Format

Share Document