scholarly journals Cognitive Facilitation and Antioxidant Effects of an Essential Oil Mix on Scopolamine-Induced Amnesia in Rats: Molecular Modeling of In Vitro and In Vivo Approaches

Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1519 ◽  
Author(s):  
Razvan Stefan Boiangiu ◽  
Ion Brinza ◽  
Monica Hancianu ◽  
Ilkay Erdogan Orhan ◽  
Gokcen Eren ◽  
...  

The present study investigated the capability of an essential oil mix (MO: 1% and 3%) in ameliorating amnesia and brain oxidative stress in a rat model of scopolamine (Sco) and tried to explore the underlying mechanism. The MO was administered by inhalation to rats once daily for 21 days, while Sco (0.7 mg/kg) treatment was delivered 30 min before behavioral tests. Donepezil (DP: 5 mg/kg) was used as a positive reference drug. The cognitive-enhancing effects of the MO in the Sco rat model were assessed in the Y-maze, radial arm maze (RAM), and novel object recognition (NOR) tests. As identified by gas chromatography–mass spectrometry (GC–MS), the chemical composition of the MO is comprised by limonene (91.11%), followed by γ-terpinene (2.02%), β-myrcene (1.92%), β-pinene (1.76%), α-pinene (1.01%), sabinene (0.67%), linalool (0.55%), cymene (0.53%), and valencene (0.43%). Molecular interactions of limonene as the major compound in MO with the active site of butyrylcholinesterase (BChE) was explored via molecular docking experiments, and Van der Waals (vdW) contacts were observed between limonene and the active site residues SER198, HIS438, LEU286, VAL288, and PHE329. The brain oxidative status and acetylcholinesterase (AChE) and BChE inhibitory activities were also determined. MO reversed Sco-induced memory deficits and brain oxidative stress, along with cholinesterase inhibitory effects, which is an important mechanism in the anti-amnesia effect. Our present findings suggest that MO ameliorated memory impairment induced by Sco via restoration of the cholinergic system activity and brain antioxidant status.

Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 21-29 ◽  
Author(s):  
David R H Evans ◽  
Brian A Hemmings

Abstract PP2A is a central regulator of eukaryotic signal transduction. The human catalytic subunit PP2Acα functionally replaces the endogenous yeast enzyme, Pph22p, indicating a conservation of function in vivo. Therefore, yeast cells were employed to explore the role of invariant PP2Ac residues. The PP2Acα Y127N substitution abolished essential PP2Ac function in vivo and impaired catalysis severely in vitro, consistent with the prediction from structural studies that Tyr-127 mediates substrate binding and its side chain interacts with the key active site residues His-118 and Asp-88. The V159E substitution similarly impaired PP2Acα catalysis profoundly and may cause global disruption of the active site. Two conditional mutations in the yeast Pph22p protein, F232S and P240H, were found to cause temperature-sensitive impairment of PP2Ac catalytic function in vitro. Thus, the mitotic and cell lysis defects conferred by these mutations result from a loss of PP2Ac enzyme activity. Substitution of the PP2Acα C-terminal Tyr-307 residue by phenylalanine impaired protein function, whereas the Y307D and T304D substitutions abolished essential function in vivo. Nevertheless, Y307D did not reduce PP2Acα catalytic activity significantly in vitro, consistent with an important role for the C terminus in mediating essential protein-protein interactions. Our results identify key residues important for PP2Ac function and characterize new reagents for the study of PP2A in vivo.


2005 ◽  
Vol 79 (20) ◽  
pp. 12721-12731 ◽  
Author(s):  
Ákos Putics ◽  
Witold Filipowicz ◽  
Jonathan Hall ◽  
Alexander E. Gorbalenya ◽  
John Ziebuhr

ABSTRACT Replication of the ∼30-kb plus-strand RNA genome of coronaviruses and synthesis of an extensive set of subgenome-length RNAs are mediated by the replicase-transcriptase, a membrane-bound protein complex containing several cellular proteins and up to 16 viral nonstructural proteins (nsps) with multiple enzymatic activities, including protease, polymerase, helicase, methyltransferase, and RNase activities. To get further insight into the replicase gene-encoded functions, we characterized the coronavirus X domain, which is part of nsp3 and has been predicted to be an ADP-ribose-1"-monophosphate (Appr-1"-p) processing enzyme. Bacterially expressed forms of human coronavirus 229E (HCoV-229E) and severe acute respiratory syndrome-coronavirus X domains were shown to dephosphorylate Appr-1"-p, a side product of cellular tRNA splicing, to ADP-ribose in a highly specific manner. The enzyme had no detectable activity on several other nucleoside phosphates. Guided by the crystal structure of AF1521, an X domain homolog from Archaeoglobus fulgidus, potential active-site residues of the HCoV-229E X domain were targeted by site-directed mutagenesis. The data suggest that the HCoV-229E replicase polyprotein residues, Asn 1302, Asn 1305, His 1310, Gly 1312, and Gly 1313, are part of the enzyme's active site. Characterization of an Appr-1"-pase-deficient HCoV-229E mutant revealed no significant effects on viral RNA synthesis and virus titer, and no reversion to the wild-type sequence was observed when the mutant virus was passaged in cell culture. The apparent dispensability of the conserved X domain activity in vitro indicates that coronavirus replicase polyproteins have evolved to include nonessential functions. The biological significance of the novel enzymatic activity in vivo remains to be investigated.


Plants ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 79 ◽  
Author(s):  
María Ibáñez ◽  
María Blázquez

The chemical composition of winter savory, peppermint, and anise essential oils, and in vitro and in vivo phytotoxic activity against weeds (Portulaca oleracea, Lolium multiflorum, and Echinochloa crus-galli) and food crops (maize, rice, and tomato), have been studied. Sixty-four compounds accounting for between 97.67–99.66% of the total essential oils were identified by Gas Chromatography-Mass Spectrometry analysis. Winter savory with carvacrol (43.34%) and thymol (23.20%) as the main compounds produced a total inhibitory effect against the seed germination of tested weed. Menthol (48.23%), menthone (23.33%), and iso-menthone (16.33%) from peppermint only showed total seed germination inhibition on L. multiflorum, whereas no significant effects were observed with trans-anethole (99.46%) from anise at all concentrations (0.125–1 µL/mL). Low doses of peppermint essential oil could be used as a sustainable alternative to synthetic agrochemicals to control L. multiflorum. The results corroborate that in vivo assays with a commercial emulsifiable concentrate need higher doses of the essential oils to reproduce previous in vitro trials. The higher in vivo phytotoxicity of winter savory essential oil constitutes an eco-friendly and less pernicious alternative to weed control. It is possible to achieve a greater in vivo phytotoxicity if less active essential oil like peppermint is included with other active excipients.


2020 ◽  
Vol 12 (3) ◽  
pp. 536-545
Author(s):  
Arun D. SHARMA ◽  
Inderjeet KAUR

SARS-CoV-2 (COVID-19), member of corona virus family, is a positive single stranded RNA virus. Due to lack of drugs it is spreading its tentacles across the world. Being associated with cough, fever, and respiratory distress, this disease caused more than 15% mortality worldwide. Mpro/3CLpro has recently been regarded as a suitable target for drug design due to its vital role in virus replication. The current study focused on the inhibitory activity of eucalyptol (1,8 cineole), an essential oil component from eucalyptus oil, against Mpro/3CLprofrom SARS-CoV-2. Till date there is no work is undertaken on in-silico analysis of this compound against Mpro/3CLproof SARS-CoV-2. Molecular docking studies were conducted by using 1-click dock tool and Patchdock analysis. In-silico absorption, distribution, metabolism, excretion and toxicity (ADMET) profile were also studied. The calculated parameters such as docking score indicated effective binding of eucalyptol to COVID-19 Mpro protein. Active site prediction revealed the involvement of active site residues in ligand binding. Interactions results indicated that, Mpro/3CLpro/eucalyptol complexes forms hydrophobic interactions. ADMET studies provided guidelines and mechanistic scope for identification of potent anti-COVID 19 drug. Therefore, eucalyptol may represent potential herbal treatment to act as COVID-19 Mpro/3CLproinhibitor, a finding which must be validated in vivo.


2019 ◽  
Vol 44 (6) ◽  
pp. 606-618 ◽  
Author(s):  
Khaled Bellassoued ◽  
Ferdaws Ghrab ◽  
Houda Hamed ◽  
Rim Kallel ◽  
Jos van Pelt ◽  
...  

The inner bark of cinnamon (Cinnamomum verum) is widely used as a spice. Cinnamon plants are also a valuable source of essential oil used for medicinal purposes. The present study aimed to investigate the composition and in vitro antioxidant activity of essential oil of C. verum bark (CvEO) and its protective effects in vivo on CCl4-induced hepatic and renal toxicity in rats. Groups of animals were pretreated for 7 days with CvEO (70 or 100 mg/kg body weight) or received no treatment and on day 7 a single dose of CCl4 was used to induce oxidative stress. Twenty-four hours after CCl4 administration, the animals were euthanized. In the untreated group, CCl4 induced an increase in serum biochemical parameters and triggered oxidative stress in both liver and kidneys. CvEO (100 mg/kg) caused significant reductions in CCl4-elevated levels of alanine transaminase, aspartate transaminase, alkaline phosphatase, γ-glutamyl transferase, lactate dehydrogenase, total cholesterol, triglycerides, low-density lipoprotein, urea, and creatinine and increased the level of high-density lipoprotein compared with the untreated group. Moreover, pretreatment with CvEO at doses of 70 and 100 mg/kg before administration of CCl4 produced significant reductions in thiobarbituric acid reactive substances and protein carbonyl levels in liver and kidney tissues compared with the untreated group. The formation of pathological hepatic and kidney lesions induced by the administration of CCl4 was strongly prevented by CvEO at a dose of 100 mg/kg. Overall, this study suggests that administration of CvEO has high potential to quench free radicals and alleviate CCl4-induced hepatorenal toxicity in rats.


2007 ◽  
Vol 189 (19) ◽  
pp. 7069-7076 ◽  
Author(s):  
Sumarin Soonsanga ◽  
Mayuree Fuangthong ◽  
John D. Helmann

ABSTRACT Bacillus subtilis OhrR is the prototype for the one-Cys family of organic peroxide-sensing regulatory proteins. Mutational analyses indicate that the high sensitivity of the active site cysteine (C15) to peroxidation requires three Tyr residues. Y29 and Y40 from the opposing subunit of the functional dimer hydrogen bond with the reactive Cys thiolate, and substitutions at these positions reduce or eliminate the ability of OhrR to respond to organic peroxides. Y19 is also critical for peroxide sensing, and the Ala substitution mutant (OhrR Y19A) is less susceptible to oxidation at the active site C15 in vivo. The Y19A protein also displays decreased sensitivity to peroxide-mediated oxidation in vitro. Y19 is in van der Waals contact with two residues critical for protein function, F16 and R23. The latter residue makes critical contact with the DNA backbone in the OhrR-operator complex. These results indicate that the high sensitivity of the OhrR C15 residue to oxidation requires interactions with the opposed Tyr residues. Oxidative modification of C15 likely disrupts the C15-Y29′-Y40′ hydrogen bond network and thereby initiates conformational changes that reduce the ability of OhrR to bind to its operator site.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7085
Author(s):  
Luminita Capatina ◽  
Edoardo Marco Napoli ◽  
Giuseppe Ruberto ◽  
Lucian Hritcu

Origanum vulgare ssp. hirtum has been used as medicinal herbs promoting antioxidant, anti-inflammatory, antimicrobial, and neuroprotective activities. We investigated the protective effects and the mechanism of O. vulgare ssp. hirtum essential oil (OEO) on cognitive impairment and brain oxidative stress in a scopolamine (Sco)-induced zebrafish (Danio rerio) model of cognitive impairment. Our results show that exposure to Sco (100 µM) leads to anxiety, spatial memory, and response to novelty dysfunctions, whereas the administration of OEO (25, 150, and 300 µL/L, once daily for 13 days) reduced anxiety-like behavior and improved cognitive ability, which was confirmed by behavioral tests, such as the novel tank-diving test (NTT), Y-maze test, and novel object recognition test (NOR) in zebrafish. Additionally, Sco-induced brain oxidative stress and increasing of acetylcholinesterase (AChE) activity were attenuated by the administration of OEO. The gas chromatography–mass spectrometry (GC-MS) analyses were used to elucidate the OEO composition, comprising thymol (38.82%), p-cymene (20.28%), and γ-terpinene (19.58%) as the main identified components. These findings suggest the ability of OEO to revert the Sco-induced cognitive deficits by restoring the cholinergic system activity and brain antioxidant status. Thus, OEO could be used as perspective sources of bioactive compounds, displaying valuable biological activities, with potential pharmaceutical applications.


2020 ◽  
Vol 117 (37) ◽  
pp. 23140-23147 ◽  
Author(s):  
Mark D. White ◽  
Laura Dalle Carbonare ◽  
Mikel Lavilla Puerta ◽  
Sergio Iacopino ◽  
Martin Edwards ◽  
...  

In higher plants, molecular responses to exogenous hypoxia are driven by group VII ethylene response factors (ERF-VIIs). These transcriptional regulators accumulate in the nucleus under hypoxia to activate anaerobic genes but are destabilized in normoxic conditions through the action of oxygen-sensing plant cysteine oxidases (PCOs). The PCOs catalyze the reaction of oxygen with the conserved N-terminal cysteine of ERF-VIIs to form cysteine sulfinic acid, triggering degradation via the Cys/Arg branch of the N-degron pathway. The PCOs are therefore a vital component of the plant oxygen signaling system, connecting environmental stimulus with cellular and physiological response. Rational manipulation of PCO activity could regulate ERF-VII levels and improve flood tolerance, but requires detailed structural information. We report crystal structures of the constitutively expressed PCO4 and PCO5 from Arabidopsis thaliana to 1.24 and 1.91 Å resolution, respectively. The structures reveal that the PCOs comprise a cupin-like scaffold, which supports a central metal cofactor coordinated by three histidines. While this overall structure is consistent with other thiol dioxygenases, closer inspection of the active site indicates that other catalytic features are not conserved, suggesting that the PCOs may use divergent mechanisms to oxidize their substrates. Conservative substitution of two active site residues had dramatic effects on PCO4 function both in vitro and in vivo, through yeast and plant complementation assays. Collectively, our data identify key structural elements that are required for PCO activity and provide a platform for engineering crops with improved hypoxia tolerance.


1997 ◽  
Vol 17 (10) ◽  
pp. 5968-5975 ◽  
Author(s):  
C M Alarcón ◽  
J Heitman

The peptidyl-prolyl isomerase FKBP12 was originally identified as the intracellular receptor for the immunosuppressive drugs FK506 (tacrolimus) and rapamycin (sirolimus). Although peptidyl-prolyl isomerases have been implicated in catalyzing protein folding, the cellular functions of FKBP12 in Saccharomyces cerevisiae and other organisms are largely unknown. Using the yeast two-hybrid system, we identified aspartokinase, an enzyme that catalyzes an intermediate step in threonine and methionine biosynthesis, as an in vivo binding target of FKBP12. Aspartokinase also binds FKBP12 in vitro, and drugs that bind the FKBP12 active site, or mutations in FKBP12 surface and active site residues, disrupt the FKBP12-aspartokinase complex in vivo and in vitro.fpr1 mutants lacking FKBP12 are viable, are not threonine or methionine auxotrophs, and express wild-type levels of aspartokinase protein and activity; thus, FKBP12 is not essential for aspartokinase activity. The activity of aspartokinase is regulated by feedback inhibition by product, and genetic analyses reveal that FKBP12 is important for this feedback inhibition, possibly by catalyzing aspartokinase conformational changes in response to product binding.


Author(s):  
Ashish Runthala ◽  
Tavakala Harsha Sai ◽  
Vandana Kamjula ◽  
Suresh C. Phulara ◽  
Vikrant Singh Rajput ◽  
...  

Abstract Background To achieve a high yield of terpenoid-based therapeutics, 1-deoxy-d-xylulose-5-phosphate (DXP) pathway has been significantly exploited for the production of downstream enzymes. The DXP synthase (DXS) enzyme, the initiator of this pathway, is pivotal for the convergence of carbon flux, and is computationally studied well for the industrially utilized generally regarded as safe (GRAS) bacterium Bacillus subtilis to decode its vital regions for aiding the construction of a functionally improved mutant library. Results For the 546 sequence dataset of DXS sequences, a representative set of 108 sequences is created, and it shows a significant evolutionary divergence across different species clubbed into 37 clades, whereas three clades are observed for the 76 sequence dataset of Bacillus subtilis. The DXS enzyme, sharing a statistically significant homology to transketolase, is shown to be evolutionarily too distant. By the mutual information-based co-evolutionary network and hotspot analysis, the most crucial loci within the active site are deciphered. The 650-residue representative structure displays a complete conservation of 114 loci, and only two co-evolving residues ASP154 and ILE371 are found to be the conserved ones. Lastly, P318D is predicted to be the top-ranked mutation causing the increase in the thermodynamic stability of 6OUW. Conclusion The study excavates the vital functional, phylogenetic, and conserved residues across the active site of the DXS protein, the key rate-limiting controller of the entire pathway. It would aid to computationally understand the evolutionary landscape of this industrially useful enzyme and would allow us to widen its substrate repertoire to increase the enzymatic yield of unnatural molecules for in vivo and in vitro applications.


Sign in / Sign up

Export Citation Format

Share Document