scholarly journals CSN improves seed vigor of aged sunflower seeds by regulating fatty acid, glycometabolism, and abscisic acid metabolism

Author(s):  
Yutao Huang ◽  
Shuyu Cai ◽  
Xiaoli Ruan ◽  
Jun Xu ◽  
Dongdong Cao
2021 ◽  
Vol 12 ◽  
Author(s):  
Yutao Huang ◽  
Min Lu ◽  
Huaping Wu ◽  
Tiyuan Zhao ◽  
Pin Wu ◽  
...  

Sunflower seed storage is accompanied by the loss of seed vigor. Seed drying is a key link between seed harvest and seed storage; however, to date, the effect of seed drying on sunflower seed deterioration during storage remains unclear. The present study performed hot air drying for sunflower seeds with an initial moisture content of 30% to examine the manner in which drying temperature (35, 40, 45, 50, and 55°C) affects the drying performance and seed vigor following storage process (6 and 12 months). A drying temperature of 40°C was evidently safe for sunflower seeds, whereas the high drying temperatures (HTD, 45, 50, and 55°C) significantly lowered sunflower seed vigor by regulating the fatty acid metabolism, glycometabolism, and abscisic acid (ABA)/gibberellin (GA) balance. HDT significantly increased the seed damage rate and accelerated sunflower seed deterioration during natural and artificial aging process. Further biochemical analysis indicated that HDT significantly increased lipoxygenase and dioxygenase activities, leading to malonaldehyde and reactive oxygen species over-accumulation during storage. During early seed germination, HDT significantly inhibited fatty acid hydrolysis and glycometabolism by decreasing triacylglycerol lipase, CoA-SH oxidase, and invertase activities. Moreover, HDT remarkably increased ABA levels but reduced GA levels by regulating gene expressions and metabolic enzyme activities during early imbibitions. Cumulatively, the seed drying effect on sunflower seed vigor deterioration during the storage process may be strongly related to fatty acid oxidation and hydrolysis metabolism, toxic substance accumulation, and ABA/GA balance.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 706
Author(s):  
Antonio J. Moreno-Pérez ◽  
Raquel Martins-Noguerol ◽  
Cristina DeAndrés-Gil ◽  
Mónica Venegas-Calerón ◽  
Rosario Sánchez ◽  
...  

Histone modifications are of paramount importance during plant development. Investigating chromatin remodeling in developing oilseeds sheds light on the molecular mechanisms controlling fatty acid metabolism and facilitates the identification of new functional regions in oil crop genomes. The present study characterizes the epigenetic modifications H3K4me3 in relationship with the expression of fatty acid-related genes and transcription factors in developing sunflower seeds. Two master transcriptional regulators identified in this analysis, VIV1 (homologous to Arabidopsis ABI3) and FUS3, cooperate in the regulation of WRINKLED 1, a transcriptional factor regulating glycolysis, and fatty acid synthesis in developing oilseeds.


2001 ◽  
Vol 76 (2) ◽  
pp. 235-241 ◽  
Author(s):  
S.K. Satoru Kondo ◽  
P.P. Panumas Posuya ◽  
S.K. Sirichai Kanlayanarat ◽  
N.H. Nobuhiro Hirai

1980 ◽  
Vol 18 (4) ◽  
pp. 359-364 ◽  
Author(s):  
W. Hartung ◽  
H. Gimmler ◽  
B. Heilmann ◽  
G. Kaiser

Author(s):  
Nicolás E Figueroa ◽  
Thomas Hoffmann ◽  
Klaus Olbricht ◽  
Suzanne R Abrams ◽  
Wilfried Schwab

Abstract Abscisic acid (ABA) is a key hormone in non-climacteric Fragaria spp, regulating multiple physiological processes throughout fruit ripening. Its level increases during ripening, and it promotes fruit (receptacle) development. However, its metabolism in the fruit is largely unknown. We analyzed the levels of ABA and its catabolites at different developmental stages of strawberry ripening in diploid and octoploid genotypes and identified two functional ABA-glucosyltransferases (FvUGT71A49 and FvUGT73AC3) and two regiospecific ABA-8’-hydroxylases (FaCYP707A4a and FaCYP707A1/3). ABA-glucose-ester content increased during ripening in diploid F. vesca varieties but decreased in octoploid F. xananassa. Dihydrophaseic acid content increased throughout ripening in all analyzed receptacles, while 7’-hydroxy-ABA and neo-phaseic acid did not show significant changes during ripening. In the studied F. vesca varieties, the receptacle seems to be the main tissue for ABA metabolism, as the content of ABA and its metabolites in the receptacle was generally 100 times higher than in achenes, respectively. The accumulation patterns of ABA catabolites and transcriptomic data from the literature show that all strawberry fruits produce and metabolize considerable amounts of the plant hormone ABA during ripening, which is therefore a conserved process, but also illustrate the diversity of this metabolic pathway which is species, variety and tissue dependent.


2020 ◽  
Vol 491 (1) ◽  
pp. 41-44
Author(s):  
V. P. Shevchenko ◽  
I. Yu. Nagaev ◽  
A. I. Shaposhnikov ◽  
K. V. Shevchenko ◽  
A. A. Belimov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document