scholarly journals Ionic complexation of endblock-sulfonated thermoplastic elastomers and their physical gels for improved thermomechanical performance

2020 ◽  
Vol 567 ◽  
pp. 419-428
Author(s):  
Jiaqi Yan ◽  
Shaoyi Yan ◽  
Joseph C. Tilly ◽  
Yeongun Ko ◽  
Byeongdu Lee ◽  
...  
Author(s):  
Sabet Abdou-Sabet ◽  
Hans-Georg Wussow ◽  
Larry M. Ryan ◽  
Lawrence Plummer ◽  
Didier Judas ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 753
Author(s):  
M. Baibarac ◽  
A. Nila ◽  
I. Smaranda ◽  
M. Stroe ◽  
L. Stingescu ◽  
...  

In this work, new films containing composite materials based on blends of thermoplastic polymers of the polyurethane (TPU) and polyolefin (TPO) type, in the absence and presence of BaTiO3 nanoparticles (NPs) with the size smaller 100 nm, were prepared. The vibrational properties of the free films depending on the weight ratio of the two thermoplastic polymers were studied. Our results demonstrate that these films are optically active, with strong, broad, and adjustable photoluminescence by varying the amount of TPU. The crystalline structure of BaTiO3 and the influence of thermoplastic polymers on the crystallization process of these inorganic NPs were determined by X-ray diffraction (XRD) studies. The vibrational changes induced in the thermoplastic polymer’s matrix of the BaTiO3 NPs were showcased by Raman scattering and FTIR spectroscopy. The incorporation of BaTiO3 NPs in the matrix of thermoplastic elastomers revealed the shift dependence of the photoluminescence (PL) band depending on the BaTiO3 NP concentration, which was capable of covering a wide visible spectral range. The dependencies of the dielectric relaxation phenomena with the weight of BaTiO3 NPs in thermoplastic polymers blends were also demonstrated.


Life ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 43
Author(s):  
Lamya Zahir ◽  
Takumitsu Kida ◽  
Ryo Tanaka ◽  
Yuushou Nakayama ◽  
Takeshi Shiono ◽  
...  

An innovative type of biodegradable thermoplastic elastomers with improved mechanical properties from very common and potentially renewable sources, poly(L-lactide)-b-poly(2-methyl-1,3-propylene glutarate)-b-poly(L-lactide) (PLA-b-PMPG-b-PLA)s, has been developed for the first time. PLA-b-PMPG-b-PLAs were synthesized by polycondensation of 2-methyl-1,3-propanediol and glutaric acid and successive ring-opening polymerization of L-lactide, where PMPG is an amorphous central block with low glass transition temperature and PLA is hard semicrystalline terminal blocks. The copolymers showed glass transition temperature at lower than −40 °C and melting temperature at 130–152 °C. The tensile tests of these copolymers were also performed to evaluate their mechanical properties. The degradation of the copolymers and PMPG by enzymes proteinase K and lipase PS were investigated. Microbial biodegradation in seawater was also performed at 27 °C. The triblock copolymers and PMPG homopolymer were found to show 9–15% biodegradation within 28 days, representing their relatively high biodegradability in seawater. The macromolecular structure of the triblock copolymers of PLA and PMPG can be controlled to tune their mechanical and biodegradation properties, demonstrating their potential use in various applications.


2021 ◽  
Vol 54 (3) ◽  
pp. 1574-1574
Author(s):  
Giuseppe Leone ◽  
Giorgia Zanchin ◽  
Rocco Di Girolamo ◽  
Fabio De Stefano ◽  
Christian Lorber ◽  
...  

RSC Advances ◽  
2019 ◽  
Vol 9 (51) ◽  
pp. 29765-29771 ◽  
Author(s):  
Minghui Xu ◽  
Xianming Lu ◽  
Hongchang Mo ◽  
Ning Liu ◽  
Qian Zhang ◽  
...  

A novel energetic polymeric binder PBFMO-b-PNMMO alternative block thermoplastic elastomer was developed for metal-rich solid propellants.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 872
Author(s):  
Malgorzata Ulewicz ◽  
Alina Pietrzak

This article presents physical and mechanical properties of concrete composites that include waste thermoplastic elastomer (TPE) from the production process of car floor mats. Waste elastomer (2–8 mm fraction) was used as a substitute for fine aggregate in quantities of 2.5, 5.0, 7.5, and 10% of the cement weight. For all series of concrete, the following tests were carried out: compression strength, bending tensile strength, splitting tensile strength, absorbability, density, resistance to water penetration under pressure, frost resistance, and abrasion resistance, according to applicable standards. Moreover, SEM/EDS analysis was carried out on the surface microstructure of synthesized concrete composites. It was proven that the use of production waste from the production process of car floor mats in the quantity of 2.5% does not influence the change of the concrete microstructure and it does not result in the decrease of the mechanical parameters of concrete modified with waste. All concrete modified with the addition of waste meet standards requirements after carrying out 15 cycles of freezing and thawing, and the average decrease in compression strength did not exceed 20%. Adding waste in the quantity of 2.5% allows for limiting the use of aggregate by about 5%, which is beneficial for the natural environment.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1597
Author(s):  
Arturo Tagliabue ◽  
Fernando Eblagon ◽  
Frank Clemens

Magnetorheological elastomers (MRE) are increasing in popularity in many applications because of their ability to change stiffness by applying a magnetic field. Instead of liquid-based 1 K and 2 K silicone, thermoplastic elastomers (TPE), based on styrene-butadiene-styrene block copolymers, have been investigated as matrix material. Three different carbonyl iron particles (CIPs) with different surface treatments were used as magneto active filler material. For the sample fabrication, the thermoplastic pressing method was used, and the MR effect under static and dynamic load was investigated. We show that for filler contents above 40 vol.-%, the linear relationship between powder content and the magnetorheological effect is no longer valid. We showed how the SiO2 and phosphate coating of the CIPs affects the saturation magnetization and the shear modulus of MRE composites. A combined silica phosphate coating resulted in a higher shear modulus, and therefore, the MR effect decreased, while coating with SiO2 only improved the MR effect. The highest performance was achieved at low deformations; a static MR effect of 73% and a dynamic MR effect of 126% were recorded. It was also shown that a lower melting viscosity of the TPE matrix helps to increase the static MR effect of anisotropic MREs, while low shear modulus is crucial for achieving high dynamic MR. The knowledge from TPE-based magnetic composites will open up new opportunities for processing such as injection molding, extrusion, and fused deposition modeling (FDM).


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1596
Author(s):  
Peng Zhang ◽  
Yongqi Zhang ◽  
Xuan Wang ◽  
Jiaming Yang ◽  
Wenbin Han

Blending thermoplastic elastomers into polypropylene (PP) can make it have great potential for high-voltage direct current (HVDC) cable insulation by improving its toughness. However, when a large amount of thermoplastic elastomer is blended, the electrical strength of PP will be decreased consequently, which cannot meet the electrical requirements of HVDC cables. To solve this problem, in this paper, the inherent structure of thermoplastic elastomer SEBS was used to construct acetophenone structural units on its benzene ring through Friedel–Crafts acylation, making it a voltage stabilizer that can enhance the electrical strength of the polymer. The DC electrical insulation properties and mechanical properties of acetylated SEBS (Ac-SEBS)/PP were investigated in this paper. The results showed that by doping 30% Ac-SEBS into PP, the acetophenone structural unit on Ac-SEBS remarkably increased the DC breakdown field strength of SEBS/PP by absorbing high-energy electrons. When the degree of acetylation reached 4.6%, the DC breakdown field strength of Ac-SEBS/ PP increased by 22.4% and was a little higher than that of PP. Ac-SEBS, with high electron affinity, is also able to reduce carrier mobility through electron capture, resulting in lower conductivity currents in SEBS/PP and suppressing space charge accumulation to a certain extent, which enhances the insulation properties. Besides, the highly flexible Ac-SEBS can maintain the toughening effect of SEBS, resulting in a remarkable increase in the tensile strength and elongation at the break of PP. Therefore, Ac-SEBS/PP blends possess excellent insulation properties and mechanical properties simultaneously, which are promising as insulation materials for HVDC cables.


2021 ◽  
Vol 12 (12) ◽  
pp. 1837-1845
Author(s):  
Hongjuan Li ◽  
Siyuan Xu ◽  
Jing Li ◽  
Yanyan Tu ◽  
Xiaohong Li ◽  
...  

A cascade polymerization method is developed here for the synthesis of environmentally-friendly biodegradable all polyester-based thermoplastic elastomers with tunable properties.


Sign in / Sign up

Export Citation Format

Share Document