Gold Nanorod@Void@Polypyrrole Yolk@Shell Nanostructures: Synchronous Regulation of Photothermal and Drug Delivery Performance for Synergistic Cancer Therapy

Author(s):  
Xiaohuan Sun ◽  
Juan Wang ◽  
Ziyao Wang ◽  
Chunhua Zhu ◽  
Juqun Xi ◽  
...  
2015 ◽  
Vol 51 (76) ◽  
pp. 14338-14341 ◽  
Author(s):  
Shengnan Li ◽  
Lingyu Zhang ◽  
Tingting Wang ◽  
Lu Li ◽  
Chungang Wang ◽  
...  

A novel, mild and facile synthetic route was first developed to fabricate hollow Au nanoflowers (designated as H-AuNFs) with drug loading capacity, superior photothermal conversion property and pH/NIR dual-responsive drug delivery performance for chemo-photothermal synergistic cancer therapy in vitro and in vivo.


2018 ◽  
Vol 5 (3) ◽  
pp. 175-187 ◽  
Author(s):  
O. V. Gorovtsova ◽  
T. L. Ushakova ◽  
V. G. Polyakov

Retinoblastoma is one of highly curable diseases; today the total 5-year survival rate in patients with retinoblastoma exceeds 95%. The article summarizes the current world experience on treatment of patients with intraocular retinoblastoma. The treating skills of intraocular malignant tumor in children are a balance between the patient’s life and the preservation of an eye and its visual functions. The complex and challenging task is the treatment of common intraocular retinoblastoma groups «C», «D», «E» when the large size or localization of the tumor does not allow performing the local (focal) destruction of the tumor. As a rule, in such cases neoadjuvant chemotherapy (CT) is performed at the first stage in order to reduce the size of the tumor for further focal therapy. However, the analysed data on the effectiveness of neoadjuvant CT in combination with focal or radiotherapy demonstrated the limited possibilities of the proposed therapy. Local drug delivery in cancer therapy became a real breakthrough in the organ-preserving treatment of children with large intraocular retinoblastoma. The most widely used current methods of local drug delivery are intravitreal (IVitC) and selective intra-arterial chemotherapy (SIAC) as monotherapy or in combination with neoadjuvant CT and focal therapy which significantly increased the percentage of preserved eyes without radiotherapy administration or damage to the patient survival. The review discusses the different IVitC and SIAC techniques, chemotherapy schemes, dosages of chemotherapy, immediate and long-term complications of treatment.


Author(s):  
Azadi A. ◽  
Khazaei M. ◽  
Ashrafi H.

Cancer, an uncontrollable growth of cells, is among the leading causes of mortality and morbidity throughout the world. Malignant neoplasms are difficult to treat diseases because of their single in kind characteristics such as tissue invasion, metastasis, evading reticuloendothelial system (RES) and so forth. In recent decade polymeric nanoparticulate systems has gained special attention in drug delivery and targeting among all biocompatible nanoforms. Among these systems, chitosan-based hydrogel nanoparticles have been wildly utilized for drug delivery purposes. The usage of chitosan nanogels in cancer therapy significantly improved in recent years. The various cancers were the target of chitosan nanogels. Also, modification of other delivery systems with chitosan were much reported. The aim of this study is the review and update of the recent studies on chitosan nanogels applications in cancer therapy by focus on cancer based classification.


2017 ◽  
Vol 23 (3) ◽  
pp. 454-466 ◽  
Author(s):  
Daniele R. Nogueira-Librelotto ◽  
Cristiane F. Codevilla ◽  
Ammad Farooqi ◽  
Clarice M. B. Rolim

A lot of effort has been devoted to achieving active targeting for cancer therapy in order to reach the right cells. Hence, increasingly it is being realized that active-targeted nanocarriers notably reduce off-target effects, mainly because of targeted localization in tumors and active cellular uptake. In this context, by taking advantage of the overexpression of transferrin receptors on the surface of tumor cells, transferrin-conjugated nanodevices have been designed, in hope that the biomarker grafting would help to maximize the therapeutic benefit and to minimize the side effects. Notably, active targeting nanoparticles have shown improved therapeutic performances in different tumor models as compared to their passive targeting counterparts. In this review, current development of nano-based devices conjugated with transferrin for active tumor-targeting drug delivery are highlighted and discussed. The main objective of this review is to provide a summary of the vast types of nanomaterials that have been used to deliver different chemotherapeutics into tumor cells, and to ultimately evaluate the progression on the strategies for cancer therapy in view of the future research.


2020 ◽  
Vol 21 (11) ◽  
pp. 1084-1098
Author(s):  
Fengqian Chen ◽  
Yunzhen Shi ◽  
Jinming Zhang ◽  
Qi Liu

This review summarizes the epigenetic mechanisms of deoxyribonucleic acid (DNA) methylation, histone modifications in cancer and the epigenetic modifications in cancer therapy. Due to their undesired side effects, the use of epigenetic drugs as chemo-drugs in cancer therapies is limited. The drug delivery system opens a door for minimizing these side effects and achieving greater therapeutic benefits. The limitations of current epigenetic therapies in clinical cancer treatment and the advantages of using drug delivery systems for epigenetic agents are also discussed. Combining drug delivery systems with epigenetic therapy is a promising approach to reaching a high therapeutic index and minimizing the side effects.


2020 ◽  
Vol 20 (4) ◽  
pp. 271-287 ◽  
Author(s):  
Kuldeep Rajpoot

Though modern available cancer therapies are effective, they possess major adverse effects, causing non-compliance to patients. Furthermore, the majority of the polymeric-based medication platforms are certainly not universally acceptable, due to their several restrictions. With this juxtaposition, lipid-based medication delivery systems have appeared as promising drug nanocarriers to replace the majority of the polymer-based products because they are in a position to reverse polymer as well as, drug-associated restrictions. Furthermore, the amalgamation of the basic principle of nanotechnology in designing lipid nanocarriers, which are the latest form of lipid carriers, has tremendous chemotherapeutic possibilities as tumor-targeted drug-delivery pertaining to tumor therapy. Apart from this, it is reported that nearly 40% of the modern medication entities are lipophilic. Moreover, research continues to be efficient in attaining a significant understanding of the absorption and bioavailability of the developed lipids systems.


Sign in / Sign up

Export Citation Format

Share Document