Synergistic freshwater and electricity production using passive membrane distillation and waste heat recovered from camouflaged photovoltaic modules

2021 ◽  
pp. 128464
Author(s):  
Giovanni Antonetto ◽  
Matteo Morciano ◽  
Matteo Alberghini ◽  
Gabriele Malgaroli ◽  
Alessandro Ciocia ◽  
...  
2020 ◽  
Vol 258 ◽  
pp. 114086 ◽  
Author(s):  
Matteo Morciano ◽  
Matteo Fasano ◽  
Luca Bergamasco ◽  
Alessandro Albiero ◽  
Mario Lo Curzio ◽  
...  

2017 ◽  
Vol 3 (3) ◽  
pp. 433-449 ◽  
Author(s):  
Noel Dow ◽  
Jesús Villalobos García ◽  
Leslie Niadoo ◽  
Nicholas Milne ◽  
Jianhua Zhang ◽  
...  

A three month membrane distillation trial demonstrated innovative pretreatments, cleaning and waste heat integration as an inland textile industry wastewater solution.


Entropy ◽  
2015 ◽  
Vol 17 (11) ◽  
pp. 7530-7566 ◽  
Author(s):  
David Warsinger ◽  
Karan Mistry ◽  
Kishor Nayar ◽  
Hyung Chung ◽  
John Lienhard

Powering desalination by waste heat is often proposed to mitigate energy consumption and environmental impact; however, thorough technology comparisons are lacking in the literature. This work numerically models the efficiency of six representative desalination technologies powered by waste heat at 50, 70, 90, and 120 °C, where applicable. Entropy generation and Second Law efficiency analysis are applied for the systems and their components. The technologies considered are thermal desalination by multistage flash (MSF), multiple effect distillation (MED), multistage vacuum membrane distillation (MSVMD), humidification-dehumidification (HDH), and organic Rankine cycles (ORCs) paired with mechanical technologies of reverse osmosis (RO) and mechanical vapor compression (MVC). The most efficient technology was RO, followed by MED. Performances among MSF, MSVMD, and MVC were similar but the relative performance varied with waste heat temperature or system size. Entropy generation in thermal technologies increases at lower waste heat temperatures largely in the feed or brine portions of the various heat exchangers used. This occurs largely because lower temperatures reduce recovery, increasing the relative flow rates of feed and brine. However, HDH (without extractions) had the reverse trend, only being competitive at lower temperatures. For the mechanical technologies, the energy efficiency only varies with temperature because of the significant losses from the ORC.


2020 ◽  
Vol 20 (5) ◽  
pp. 1678-1691 ◽  
Author(s):  
Mostafa Abd El-Rady Abu-Zeid ◽  
Gamal ElMasry

Abstract Two rectangular modules with a total interior membrane surface area of 13.53 m2 were consecutively combined to evaluate the use of heat recovery in an air-gap membrane distillation (AGMD) system. Several operating inlet parameters including feed water temperature, mass water flow rate and salinity were investigated. The experimental results revealed that the performance of the system was improved by virtue of efficient heat recovery resulting from combining two AGMD membrane modules in series. Under optimal inlet operating parameters of cooling water temperature of 20 °C, salinity of 0.05% and flow rate of 3 l/min, the system productivity (Pp) increased up to 192.9%, 179.3%, 176.5% and 179.2%, and the thermal efficiency (ηth) by 261.5%, 232.6%, 239.4% and 227.3% at feed water temperatures of 45 °C, 55 °C, 65 °C and 75 °C, respectively. Concurrently, the specific waste heat input (Ew.h.i) decreased by 6.7%, 4.7%, 5.6% and 2.7% due to the efficient heat recovery. The results confirmed that heat recovery is an important factor affecting the AGMD system that could be improved by designing one of the two AGMD modules with polytetrafluoroethylene (PTFE) hollow fibers with a flow length shorter than the other one having a salt rejection rate of 99%.


2020 ◽  
Vol MA2020-02 (41) ◽  
pp. 2675-2675
Author(s):  
Weiguang Wang ◽  
Gequn Shu ◽  
Dongxing Huo ◽  
Shuang Yang ◽  
Xiuping Zhu ◽  
...  

2019 ◽  
Author(s):  
Ahmad Bamasag ◽  
Talal Alqahtani ◽  
Shahnawaz Sinha ◽  
Patrick Phelan

Abstract Membrane distillation (MD) has been studied as a promising solution in the desalination industry but it has not been widely accepted or commercialized due to energy and cost concerns. MD is considered as a hybrid method that involves phase-change thermal processes and the use of membrane separation. Unlike conventional pressure-driven membrane methods such as reverse osmosis (RO), MD does not require intensive pre-treatment and can operate at lower pressure with higher salinities; but more importantly, it can utilize low-grade heat sources such as solar energy or waste heat for its operation. In this paper, an innovative MD module to directly employ solar thermal energy to assist in desalination is studied. MD systems that use solar energy as an external heater is investigated experimentally and theoretically. The proposed system, however, integrates hollow-fiber distillation membranes inside evacuated tubes solar collectors. As a result, the temperature is more uniformly distributed, minimizing the effect of temperature polarization, one of the key challenges of MD operation, thus can enhance the MD performance. The technical performance of the system is measured experimentally. The results of the proposed system are compared with a conventional MD process to investigate improvements in water production.


2020 ◽  
Vol 20 (7) ◽  
pp. 2858-2874
Author(s):  
Mostafa Abd El-Rady Abu-Zeid ◽  
Xiaolong Lu ◽  
Shaozhe Zhang

Abstract The low flux and high energy consumption problems of the conventional three-stage air-gap membrane distillation (AG-AG-AG)MD system caused by the low temperature difference between hot and cold feed at both sides of the membrane and high boundary layer thickness were solved successfully by replacing one of the three stages of air gaps by a water gap. The novel three-stage air-gap–water-gap membrane distillation (AG-AG-WG)MD system reduced energy consumption and increased flux due to efficient internal heat recycling by virtue of a water-gap module. Heat and mass transfer in novel and conventional three-stage systems were analyzed theoretically. Under a feed temperature of 45 °C, flow rate of 20 l/h, cooling temperature of 20 °C, and concentration of 340 ppm, the (AG-AG-WG)MD promoted flux by 17.59% and 211.69%, and gained output ratio (GOR) by 60.57% and 204.33% compared with two-stage (AG-WG)MD and one-stage AGMD, respectively. This work demonstrated the important role of a water gap in changing the heat and mass transfer where convection heat transfer across the water gap is faster by 24.17 times than conduction heat transfer through the air gap. The increase in flux and GOR economized the heating energy and decreased waste heat input into the system. Additionally, the number of MD stages could increase the achieving of a high flux with operation stability.


2020 ◽  
Vol 145 ◽  
pp. 106142 ◽  
Author(s):  
Cristian A. Robbins ◽  
Brandi M. Grauberger ◽  
Shane D. Garland ◽  
Kenneth H. Carlson ◽  
Shihong Lin ◽  
...  

2014 ◽  
Vol 70 (2) ◽  
Author(s):  
K. C. Chong ◽  
S. O. Lai

Membrane distillation (MD) is an emerging membrane separation technique which provides a competition for the conventional separation process such as reverse osmosis (RO) and thermal distillation. The MD process was first developed in the 1960s, but only recently garnered the interest from academics and industry due to the advancement of membrane fabrication technique. The MD is a thermal-driven process which has an ability to be integrated with renewable energy and/or waste heat. The driving force of the MD process is vapor pressure difference where the feed vapor is transported through the non-wetted hydrophobic porous membrane to the permeate regime where permeate will be collected via condensation. As such, the MD possesses a theoretical rejection rate of nearly 100%. This review addressed the recent progress of the MD process in terms of membrane fabrication, integration with renewable energy and/or other membrane separation process as well as applications of MD in various industries. This paper may serve as an update of the recent progress of MD which in some way, is able to help the researchers explore the new investigation field in MD for it to be commercially more viable.


Sign in / Sign up

Export Citation Format

Share Document