A novel green method for copper recovery from cuprous thiocyanate-containing acidified sediments in the gold industry

2021 ◽  
pp. 129729
Author(s):  
Mingxin Li ◽  
Binchuan Li ◽  
Jianshe Chen ◽  
Xiaoyi Shen ◽  
Shuang Cui ◽  
...  
1952 ◽  
Vol 44 (3) ◽  
pp. 448-449
Author(s):  
Robert Rusher ◽  
George Blum
Keyword(s):  

2019 ◽  
Vol 16 (2) ◽  
pp. 309-313
Author(s):  
Mustafa Kemal Gümüş

Aim and Objective: In this work, water was used as solvent for the eco-friendly synthesis of imines under microwave irradiation. In the first step of the study, 5-pyridinyl-3-amino-1,2,4-triazole hydrochlorides were synthesized in the reaction of amino guanidine hydrochloride with different pyridine carboxylic acids under acid catalysis. A green method for 5-pyridinyl-3-amino-1,2,4-triazoles was developed with the assistance of microwave synthesis. In the second step, the eco-friendly synthesis of imines was achieved by reacting 5- pyridinyl-2H-1,2,4-triazol-3-amine hydrochlorides with salicylic aldehyde derivatives to produce 2-(5- pyridinyl-2H-1,2,4-triazol-3-ylimino)methyl)phenol imines. Materials and Methods: Microwave experiments were done using a monomode Anton Paar Monowave 300 microwave reactor (2.45 GHz). Reaction temperatures were monitored by an IR sensor. Microwave experiments were carried out in sealed microwave process vials G10 with maximum reaction volume of 10 mL. Results: When alternative methods were used, it was impossible to obtain good yields from ethanol. Nevertheless, the use of water was successful for this reaction. After 1-h microwave irritation, a yellow solid was obtained in 82% yield. Conclusion: In this work an eco-friendly protocol for the synthesis of Schiff bases from 5-(pyridin-2-, 3- or 4- yl)-3-amino-1,2,4-triazoles and substituted salicylic aldehydes in water under microwave irradiation was developed. Under the found conditions the high yields for the products were achieved at short reaction time and with an easy isolation procedure.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3279
Author(s):  
Ilma Nugrahani ◽  
Maria Anabella Jessica

Co-crystals are one of the most popular ways to modify the physicochemical properties of active pharmaceutical ingredients (API) without changing pharmacological activity through non-covalent interactions with one or more co-formers. A “green method” has recently prompted many researchers to develop solvent-free techniques or minimize solvents for arranging the eco-friendlier process of co-crystallization. Researchers have also been looking for less-risk co-formers that produce the desired API’s physicochemical properties. This review purposed to collect the report studies of amino acids as the safe co-former and explored their advantages. Structurally, amino acids are promising co-former candidates as they have functional groups that can form hydrogen bonds and increase stability through zwitterionic moieties, which support strong interactions. The co-crystals and deep eutectic solvent yielded from this natural compound have been proven to improve pharmaceutical performance. For example, l-glutamine could reduce the side effects of mesalamine through an acid-base stabilizing effect in the gastrointestinal fluid. In addition, some amino acids, especially l-proline, enhances API’s solubility and absorption in its natural deep eutectic solvent and co-crystals systems. Moreover, some ionic co-crystals of amino acids have also been designed to increase chiral resolution. Therefore, amino acids are safe potential co-formers, which are suitable for improving the physicochemical properties of API and prospective to be developed further in the dosage formula and solid-state syntheses.


Author(s):  
Pengrui Zhuang ◽  
Ke Xiang ◽  
Xiangxi Meng ◽  
Guohe Wang ◽  
Ziyuan Li ◽  
...  

A facile and green method was developed to fabricate Nd-DTPA on a large scale without byproducts for CT/spectral CT and NIR II fluorescence imaging of the gastrointestinal tract in vivo.


2021 ◽  
Vol 45 (9) ◽  
pp. 4507-4507
Author(s):  
Vu Thanh Nguyen ◽  
Hai Truong Nguyen ◽  
Phuong Hoang Tran

Correction for ‘One-pot three-component synthesis of 1-amidoalkyl naphthols and polyhydroquinolines using a deep eutectic solvent: a green method and mechanistic insight’ by Vu Thanh Nguyen et al., New J. Chem., 2021, 45, 2053–2059, DOI: 10.1039/d0nj05687a.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 586
Author(s):  
Yunpeng Du ◽  
Xiong Tong ◽  
Xian Xie ◽  
Wenjie Zhang ◽  
Hanxu Yang ◽  
...  

Zinc-leaching residue (ZLR) is a strongly acidic hazardous waste; it has poor stability, high heavy metal levels, and releases toxic elements into the environment. ZLR has potential as a valuable resource, because it contains elevated levels of zinc and silver. In this paper, the recovery of zinc (Zn) and silver (Ag) from ZLR wastes from zinc hydrometallurgy workshops using water leaching followed by flotation was studied. During water leaching experiments, the zinc and copper recovery rates were 38% and 61%, respectively. Thereafter, various flotation testing parameters were optimized and included grinding time, reagent dosages, pulp density, flotation time, and type of adjuster. Experimental results demonstrated this flotation method successfully recycled Ag and Zn. A froth product containing more than 9256.41 g/t Ag and 12.26% Zn was produced from the ZLR with approximately 80.32% Ag and 42.88% Zn recoveries. The toxicity characteristic leaching procedure (TCLP) results indicated the water-leaching flotation process not only recycled valuable metals such as zinc and silver in zinc-containing hazardous wastes but lowered the hazardous waste levels to those of general wastes and recycled wastes in an efficient, economical, and environmentally friendly way.


JOM ◽  
2020 ◽  
Author(s):  
Joona Rajahalme ◽  
Siiri Perämäki ◽  
Roshan Budhathoki ◽  
Ari Väisänen

AbstractThis study presents an optimized leaching and electrowinning process for the recovery of copper from waste printed circuit boards including studies of chemical consumption and recirculation of leachate. Optimization of leaching was performed using response surface methodology in diluted sulfuric acid and hydrogen peroxide media. Optimum leaching conditions for copper were found by using 3.6 mol L−1 sulfuric acid, 6 vol.% hydrogen peroxide, pulp density of 75 g L−1 with 186 min leaching time at 20°C resulting in complete leaching of copper followed by over 92% recovery and purity of 99.9% in the electrowinning. Study of chemical consumption showed total decomposition of hydrogen peroxide during leaching, while changes in sulfuric acid concentration were minor. During recirculation of the leachate with up to 5 cycles, copper recovery and product purity remained at high levels while acid consumption was reduced by 60%.


Sign in / Sign up

Export Citation Format

Share Document