Preparation of a ricinoleic acid modified amphoteric polyurethane for leather cleaner and simplifying production

2021 ◽  
pp. 129877
Author(s):  
Xuechuan Wang ◽  
Xiaomei Lan ◽  
Xing Zhu ◽  
Siwei Sun
Keyword(s):  

Castor oil (Ricinus communus L.) is an important commercial product. The climatic conditions of Ukraine determine the possibility of growing the castor as an annual crop. At the Institute of Oilseeds NAAS studied castor collection. The aim of the work was the selection of the most promising samples of castor oil, combining a large yield potential in a narrow range of vertical distribution for optimal technological parameters of mechanical harvesting with a high content of oil in seeds and ricinolic acid in oil. In the experience of 2015-2016, the manifestation of morphological features of 17 castor bean samples was studied. The height of plants, individual samples among themselves differed more than twice. Long-brush samples of ЕР118, К374, М203, К159 are distinguished on the basis of the length of the brush. The shortest brush was observed in sample K1008. The length of the productive brush in the studied samples is from 10.7 to 32.9 cm. Most castor bean samples under favorable conditions form brushes of the second and higher orders. According to this parameter, samples of Ep118 and selection No. 38 with four inflorescences of the second order are of the greatest interest. The largest brushes of the second order are similar in size to the brushes of the first order were observed in the samples: К1127, К810, К153. The adaptability of harvesting castor beads requires that the brushes of the first and second order coincide in height with each other, since the harvester can take a maximum of 60 cm. For the sum of the productive brushes of the first and second orders, the greatest potential yield will be provided by samples K159 and K1127. Among the studied collection stands out the small seed sample K159 and the large seed samples - PRL41 and K80. The average oil content in the seeds of the collection was from 52 to 61.4%. Sample38 had the highest oil content. The content of ricinolic acid in the collection was from 70.9 to 82.9%. Samples were isolated: К134, К1008, PRL41, К430 with the content of ricinoleic acid more than 80%. The results of the study of all parameters make it possible to isolate valuable technological samples. Sample K1064 with a high technological potential of productivity, with a seed oil content of 57.2%, has a not very high content of ricinoleic acid of 74.3%. Sample K1127 with an oil content of 58.6%, a mass of 1000 seeds of 265 g, a high potential of productive brushes has a wide variation in the arrangement of brushes. Sample K134 with a oil content of 57.1%, ricinoleic acid content of 80.7% has small second-order brushes and can be used as a single-cysts in a thicker seeding.


Author(s):  
Ann Kiplagat Jepkorir ◽  
Charles Maina Irungu ◽  
Philip Bett Kendagor

All parts of A. indica (neem) and R. communis (castor) plants have mostly been used as natural remedies in the control and treatment of several ailments, control of pests and insects, animal feeds and production of industrial products globally. The seed oils of A. indica and R. communis are known to have antidiabetic, anti-helminthic, antifertility, antioxidant, antibacterial, anti-inflammatory, anti-cancer, insecticidal and mosquitocidal activity. This study reports for the first time the chemical composition of A. indica and R. communis seed oils from Marigat, Baringo County, Kenya. Seed oils of A. indica and R. communis were   extracted from mature dried seeds through cold pressing and boiling respectively and chemical composition determined using Gas Chromatography (GC)-Mass Spectrometry (MS).  The constituents of both seed oils were dominated by saturated and unsaturated fatty acids, cyclic esters and methyl esters. The predominant constituents of R. communis were (Z)-6-Octadecenoic acid (37.33%), Ricinoleic acid (30.22%) and 13-Hexyloxacyclotridec-10-en-2-one (26.67%) while those of A. indica were 2-hexyl-1-decanol (30.97%), Octadecanoic acid (29.69%) and Oxalic acid, 6-ethyloct-3-yl ethyl ester (15.55%). Oils contained Hexadecanoic acid and Octadecanoic acid which are used in the manufacture of several products such as candles, soaps, lotions, perfumes and cosmetics. Octadecenoic acid is important in control of human diseases and Ricinoleic acid in production of alkyd resins for surface coating and biofuel.  From the results, A. indica and R. communis seed oils constituents have potential in the agricultural, industrial, comestics and pharmaceutical sectors but require further fractionation to isolate the bioactive compounds.


Author(s):  
J.S.R. Barbosa ◽  
J.G. Souza ◽  
C.J. L. Herbster ◽  
L.P. Silva ◽  
J.D.G. Carvalho ◽  
...  
Keyword(s):  

2015 ◽  
Vol 39 (9) ◽  
pp. 7251-7259 ◽  
Author(s):  
Joseph W. Kyobe ◽  
Egid B. Mubofu ◽  
Yahya M. M. Makame ◽  
Sixberth Mlowe ◽  
Neerish Revaprasadu

Ultra-small CdSe quantum dots were thermally synthesized using castor oil and ricinoleic acid both as capping agents and dispersing solvents.


RSC Advances ◽  
2021 ◽  
Vol 11 (30) ◽  
pp. 18171-18178
Author(s):  
Shuzhe Guan ◽  
Xuanchi Liu ◽  
Wumanjiang Eli

Synthesis of nanocarbon-poly(ricinoleic acid) composite as a lubricant additive with improved dispersity and anti-wear properties.


2018 ◽  
Vol 3 (48) ◽  
pp. 13548-13552
Author(s):  
Michael B. Mensah ◽  
Paul D. McNaughter ◽  
Simon G. McAdams ◽  
Floriana Tuna ◽  
David J. Lewis ◽  
...  
Keyword(s):  

1988 ◽  
Vol 7 (6) ◽  
pp. 721-739 ◽  

Glyceryl Ricinoleate is the monoester of glycerol and ricinoleic acid. Castor oil contains 87–90% Glycerol Ricinoleate. Ricinoleic acid is metabolized by both β-oxidation and α-oxidation. Acute oral toxicity tests in mice indicated that Glyceryl Ricinoleate has an LD50 greater than 25.0 ml/kg and is, at most, mildly irritating to unrinsed rabbit eyes. This ingredient was not a primary skin irritant. Castor oil was nonmutagenic by the Ames test. Ricinoleic acid was not a carcinogen when tested in mice. In human single-insult occlusive patch tests, no indication of skin irritation potential was observed in the two products containing 5.6% Glyceryl Ricinoleate. The available data on Glyceryl Ricinoleate were insufficient to determine whether this ingredient, under each relevant condition of use, was either safe or not safe. The types of data required before a decision can be made include: (1) 28 day chronic dermal toxicity in guinea pigs, and (2) clinical sensitization and photosensitization studies (or an appropriate ultraviolet spectrum instead of the photosensitization data).


2013 ◽  
Vol 98 (1) ◽  
pp. 251-262 ◽  
Author(s):  
A. Beopoulos ◽  
J. Verbeke ◽  
F. Bordes ◽  
M. Guicherd ◽  
M. Bressy ◽  
...  

2008 ◽  
Vol 44 (8) ◽  
pp. 1130-1133 ◽  
Author(s):  
R. R. Muslukhov ◽  
A. Kh. Shayakhmetova ◽  
M. P. Yakovleva ◽  
O. V. Shitikova ◽  
G. Yu. Ishmuratov ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document