scholarly journals Myocardial Native T1 Predicts Load-Independent Left Ventricular Chamber Stiffness In Patients With HFpEF

2020 ◽  
Vol 13 (10) ◽  
pp. 2117-2128 ◽  
Author(s):  
Taku Omori ◽  
Shiro Nakamori ◽  
Naoki Fujimoto ◽  
Masaki Ishida ◽  
Kakuya Kitagawa ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pankaj Garg ◽  
Hosamadin Assadi ◽  
Rachel Jones ◽  
Wei Bin Chan ◽  
Peter Metherall ◽  
...  

AbstractCardiac magnetic resonance (CMR) is emerging as an important tool in the assessment of heart failure with preserved ejection fraction (HFpEF). This study sought to investigate the prognostic value of multiparametric CMR, including left and right heart volumetric assessment, native T1-mapping and LGE in HFpEF. In this retrospective study, we identified patients with HFpEF who have undergone CMR. CMR protocol included: cines, native T1-mapping and late gadolinium enhancement (LGE). The mean follow-up period was 3.2 ± 2.4 years. We identified 86 patients with HFpEF who had CMR. Of the 86 patients (85% hypertensive; 61% males; 14% cardiac amyloidosis), 27 (31%) patients died during the follow up period. From all the CMR metrics, LV mass (area under curve [AUC] 0.66, SE 0.07, 95% CI 0.54–0.76, p = 0.02), LGE fibrosis (AUC 0.59, SE 0.15, 95% CI 0.41–0.75, p = 0.03) and native T1-values (AUC 0.76, SE 0.09, 95% CI 0.58–0.88, p < 0.01) were the strongest predictors of all-cause mortality. The optimum thresholds for these were: LV mass > 133.24 g (hazard ratio [HR] 1.58, 95% CI 1.1–2.2, p < 0.01); LGE-fibrosis > 34.86% (HR 1.77, 95% CI 1.1–2.8, p = 0.01) and native T1 > 1056.42 ms (HR 2.36, 95% CI 0.9–6.4, p = 0.07). In multivariate cox regression, CMR score model comprising these three variables independently predicted mortality in HFpEF when compared to NTproBNP (HR 4 vs HR 1.65). In non-amyloid HFpEF cases, only native T1 > 1056.42 ms demonstrated higher mortality (AUC 0.833, p < 0.01). In patients with HFpEF, multiparametric CMR aids prognostication. Our results show that left ventricular fibrosis and hypertrophy quantified by CMR are associated with all-cause mortality in patients with HFpEF.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ulf K. Radunski ◽  
Johannes Kluwe ◽  
Malte Klein ◽  
Antonio Galante ◽  
Gunnar K. Lund ◽  
...  

AbstractTransjugular intrahepatic portosystemic shunt (TIPS) reduces portal hypertension in patients with liver cirrhosis. The exact cardiac consequences of subsequent increase of central blood volume are unknown. Cardiovascular magnetic resonance (CMR) imaging is the method of choice for quantifying cardiac volumes and ventricular function. The aim of this study was to investigate effects of TIPS on the heart using CMR, laboratory, and imaging cardiac biomarkers. 34 consecutive patients with liver cirrhosis were evaluated for TIPS. Comprehensive CMR with native T1 mapping, transthoracic echocardiography, and laboratory biomarkers were assessed before and after TIPS insertion. Follow-up (FU) CMR was obtained in 16 patients (47%) 207 (170–245) days after TIPS. From baseline (BL) to FU, a significant increase of all indexed cardiac chamber volumes was observed (all P < 0.05). Left ventricular (LV) end-diastolic mass index increased significantly from 45 (38–51) to 65 (51–73) g/m2 (P =  < 0.01). Biventricular systolic function, NT-proBNP, high-sensitive troponin T, and native T1 time did not differ significantly from BL to FU. No patient experienced cardiac decompensation following TIPS. In conclusion, in patients without clinically significant prior heart disease, increased cardiac preload after TIPS resulted in increased volumes of all cardiac chambers and eccentric LV hypertrophy, without leading to cardiac impairment during follow-up in this selected patient population.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
L Zhang ◽  
Y.K Guo ◽  
Z.G Yang ◽  
M.X Yang ◽  
K.Y Diao ◽  
...  

Abstract Background Cardiac magnet resonance (CMR) T1 mapping allows the quantitative characterization of the severity of tissue injury and predict functional recovery in acute myocardial infarction (AMI). Purpose The study aimed to investigate whether native T1 and ECV of infarct myocardium are influenced by microvascular obstruction (MVO) and have predictive value for adverse left ventricular (LV) remodeling post-infarction. Method A cohort of 54 patients with successfully reperfused STEMI underwent CMR imaging at a 3T scanner in AMI and 3 months post-infarction. Native T1 data was acquired using a modified Look-Locker inversion recovery (MOLLI) sequence, and ECV maps were calculated using blood sampled hematocrit. Manual regions-of-interest were drawn within the infarct myocardium to measure native T1 and ECV (native T1infarct and ECVinfarct, respectively). MVO identified as a low-intensity area within the infarct zone on LGE was eliminated. Results MVO was present in 36 patients (66.67%) in AMI. ECVinfarct in patients with MVO was different from those without (58.66±8.71% vs. 49.64±8.82%, P=0.001), while no significant difference in T1infarct was observed between patients with and without MVO (1474.7±63.5ms vs. 1495.4±98.0ms, P=0.352). ECV correlated well with the change in end-diastolic volume (all patients: r=0.564, P&lt;0.001) and predicted LV remodeling in patients with and without MVO (rMVO absent = 0.626, P=0.005; rMVO present = 0.686, P&lt;0.001; all patients: r=0.622, P&lt;0.001); Native T1 was only associated with a 3-month change in LV end-diastolic volume (rMVO absent= 0.483, P=0.042) and predicted LV remodeling in patients without MVO (rMVO absent = 0.659, P=0.003). Furthermore, ECV had an association with LV remodeling (β=0.312, P=0.007) in multivariable logistic analysis. Conclusion Absolute native T1 in infarct myocardium might be affected by MVO but ECV isn't. ECV could predict LV remodeling in MI patients with and without MVO, while native T1 predict it in MI with MVO absent. Funding Acknowledgement Type of funding source: Public hospital(s). Main funding source(s): 1·3·5 project for disciplines of excellence, West China Hospital, Sichuan University


2017 ◽  
Vol 2 (3) ◽  
pp. 262-265
Author(s):  
Daniel Cernica ◽  
Lehel Bordi ◽  
Elena Beganu ◽  
Ioana Rodean ◽  
Imre Benedek

Abstract Coronary fistulas are rare, not gender-specific congenital conditions, consisting of communications between the coronary arteries and either another coronary vessel or a cardiac chamber. In contrast to large fistulas, small fistulas, named “minimae cordis veneae” or the Thebesius venous system, are draining into heart chambers and form a vascular network in the cardiac lumen. In this article, we present the case of a 72-year-old female with a significant history of cardiovascular disease, admitted to our clinic because of rest dyspnea, fatigue, and minimal chest pain. The 12-lead electrocardiogram showed a trifascicular block (a second-degree atrioventricular block Mobitz II, associated with a right bundle branch block and left anterior fascicle block) and negative T waves in DII, DIII, aVF, V4–V6 leads. An invasive coronary angiography was performed, which revealed no significant atherosclerotic lesions. However, a persistent capillary blush was present at the apex site of the left ventricular chamber, draining from the distal segments of both the anterior descending coronary artery and the posterior interventricular coronary artery. The intramural vascular network generating a left ventricle angiogram image of this kind was suggestive for persistent Thebesian vessels connecting the two coronaries with the left ventricular chamber.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Lei Zhao ◽  
Songnan Li ◽  
Chen Zhang ◽  
Jie Tian ◽  
Aijia Lu ◽  
...  

Abstract Background Myocardial strain assessed with cardiovascular magnetic resonance (CMR) feature tracking can detect early left ventricular (LV) myocardial deformation quantitatively in patients with a variety of cardiovascular diseases, but this method has not yet been applied to quantify myocardial strain in patients with atrial fibrillation (AF) and no coexistent cardiovascular disease, i.e., the early stage of AF. This study sought to compare LV myocardial strain and T1 mapping indices in AF patients and healthy subjects, and to investigate the associations of a portfolio of inflammation, cardiac remodeling and fibrosis biomarkers with LV myocardial strain and T1 mapping indices in AF patients with no coexistent cardiovascular disease. Methods The study consisted of 80 patients with paroxysmal AF patients and no coexistent cardiovascular disease and 20 age- and sex-matched healthy controls. Left atrial volume (LAV), LV myocardial strain and native T1 were assessed with CMR, and compared between the AF patients and healthy subjects. Biomarkers of C-reactive protein (CRP), transforming growth factor beta-1 (TGF-β1), collagen III N-terminal propeptide (PIIINP), and soluble suppression of tumorigenicity 2 (sST2) were obtained with blood tests, and compared between the AF patients and healthy controls. Associations of these biomarkers with those CMR-measured parameters were analyzed for the AF patients. Results For the CMR-measured parameters, the AF patients showed significantly larger LAV and LV end-systolic volume, and higher native T1 than the healthy controls (max P = 0.027). The absolute values of the LV peak systolic circumferential strain and its rate as well as the LV diastolic circumferential strain rate were all significantly reduced in the AF patients (all P < 0.001). For the biomarkers, the AF patients showed significantly larger CRP (an inflammation biomarker) and sST2 (a myocardium stiffness biomarker) than the controls (max P = 0.007). In the AF patients, the five CMR-measured parameters of LAV, three LV strain indices and native T1 were all significantly associated with these two biomarkers of CRP and sST2 (max P = 0.020). Conclusions In patients with paroxysmal AF and no coexistent cardiovascular disease, LAV enlargement and LV myocardium abnormalities were detected by CMR, and these abnormalities were associated with biomarkers that reflect inflammation and myocardial stiffness.


2021 ◽  
Author(s):  
M. von Stumm ◽  
J. Petersen ◽  
J. Pausch ◽  
T. Holst ◽  
T. M. Sequeira Gross ◽  
...  

2010 ◽  
Vol 28 (3) ◽  
pp. 276-287 ◽  
Author(s):  
Dejana Popovic ◽  
Miodrag C. Ostojic ◽  
Milan Petrovic ◽  
Bosiljka Vujisic-Tesic ◽  
Bojana Popovic ◽  
...  

1998 ◽  
Vol 274 (3) ◽  
pp. H945-H954 ◽  
Author(s):  
Steven B. Solomon ◽  
Srdjan D. Nikolic ◽  
Stanton A. Glantz ◽  
Edward L. Yellin

In patients with heart failure, decreased contractility resulting in high end-diastolic pressures and a restrictive pattern of left ventricular filling produces a decrease in early diastolic filling, suggesting a stiff ventricle. This study investigated the elastic properties of the myocardium and left ventricular chamber and the ability of the heart to utilize elastic recoil to facilitate filling during pacing-induced heart failure in the anesthetized dog. Elastic properties of the myocardium were determined by analyzing the myocardial stress-strain relation. Left ventricular chamber properties were determined by analyzing the pressure-volume relation using a logarithmic approach. Elastic recoil was characterized using a computer-controlled mitral valve occluder to prevent transmitral flow during diastole. We conclude that, during heart failure, the high end-diastolic pressures suggestive of a stiff ventricle are due not to stiffer myocardium but to a ventricle whose chamber compliance characteristics are changed due to geometric remodeling of the myocardium. The restrictive filling pattern is a result of the ventricle being forced to operate on the stiff portion of the diastolic pressure-volume relation to maintain cardiac output. Slowed relaxation and decreased contractility result in an inability of the heart to contract to an end-systolic volume below its diastolic equilibrium volume. Thus the left ventricle cannot utilize elastic recoil to facilitate filling during heart failure.


Sign in / Sign up

Export Citation Format

Share Document