Comparison of pregelatinization methods on physicochemical, functional and structural properties of tartary buckwheat flour and noodle quality

2018 ◽  
Vol 80 ◽  
pp. 63-71 ◽  
Author(s):  
Xiaojing Sun ◽  
Wenhao Li ◽  
Yayun Hu ◽  
Xingjie Zhou ◽  
Mengying Ji ◽  
...  
Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 997
Author(s):  
Tatsuro Suzuki ◽  
Takahiro Hara ◽  
Kenjiro Katsu

Buckwheat is recognized as an important traditional crop and supports local economies in several regions around the world. Buckwheat is used, for example, as a cereal grain, noodle and bread. In addition, buckwheat is also used as a sprout or a young seedling. For these foods, sprouting is an important characteristic that affects food quality. For foods made from buckwheat flour, pre-harvest sprouting may decrease yield, which also leads to the deterioration of noodle quality. Breeding buckwheat that is resistant to pre-harvest sprouting is therefore required. Germination and subsequent growth are also important characteristics of the quality of sprouts. Although buckwheat sprouts are the focus because they contain many functional compounds, such as rutin, several problems have been noted, such as thin hypocotyls and husks remaining on sprouts. To date, several new varieties have been developed to resolve these quality issues. In this review, we summarize and introduce research on the breeding of buckwheat related to quality, sprouting and subsequent sprout growth.


2017 ◽  
Vol 23 (6) ◽  
pp. 783-792 ◽  
Author(s):  
Na-Na Wu ◽  
Xiao-Hong Tian ◽  
Yan-Xiang Liu ◽  
Huan-Huan Li ◽  
Run-Ping Liang ◽  
...  

2020 ◽  
Vol 51 (4) ◽  
pp. 688-697 ◽  
Author(s):  
Yu Chen ◽  
Mohammed Obadi ◽  
Shuyi Liu ◽  
Yajing Qi ◽  
Zhongwei Chen ◽  
...  

2020 ◽  
Vol 61 (2) ◽  
pp. 257-280 ◽  
Author(s):  
Blanka Vombergar

Samples of common buckwheat (Fagopyrum esculentum Moench) and Tartary buckwheat (F. tataricum Gaertn.) were used in milling, sieving and analysing experiments. Rutin and quercetin were analysed in buckwheat samples, in milling and sieving fractions and after the contact of flour particles with water, to simulate conditions in dough. The concentration of rutin in Tartary buckwheat was 1.17–1.75% in dry matter, while it was only 0.003% in dry matter of common buckwheat. Thus it is in Tartary buckwheat in this case 400 times more rutin in comparison to common buckwheat. In buckwheat dough with the time after mixing flour and water, the concentration of rutin diminished, the time needed was different in common and Tartary buckwheat dough, and quercetin appeared instead. Immediately after the direct contact of flour particles of common and Tartary buckwheat with water the rutin concentration changed from 11.7 to 0.79 mg/100 g dry matter (DM), and quercetin appeared (5.7 mg/100 g DM), in comparison in initial flour the concentration of quercetin was only 0.6 mg/100 g DM. In common buckwheat dough the apparent concentration of rutin changed from initial 0.0258 mg/g to 0.0263 mg/g DM, and after one hour after the beginning of contact of flour with water rutin concentration changed to only 0.0005 mg/g DM).  Keywords: common buckwheat, Tartary buckwheat, flavonoids, rutin, quercetin, milling, dough   Izvleček Raziskovali smo vzorce navadne ajde (Fagopyrum esculentum Moench) in tatarske ajde (F. tataricum Gaertn.). Vzorce smo mleli, presejavali, pripravljali testo (mešanica moke in vode) ter  izmerili vsebnost rutina in kvercetina. Tatarska ajda ima bistveno višjo vsebnost rutina kot navadna ajda. Vsebnost rutina v raziskovani tatarski ajdi je 1,17–1,75 % v suhi snovi (SS), v navadni ajdi ´siva´ pa le 0,003 %. V tatarski ajdovi moki smo izmerili okoli 400x več rutina kot v navadni ajdovi moki. Pri neposrednem stiku ajdove moke z vodo težko najdemo vzporednice med  tatarsko ajdo in navadno ajdo in dogajanji v povezavi z rutinom v testu.  Koncentracija rutina v testu se po določenem času (različen čas pri navadni in tatarski ajdi – 5 minut do 2 uri) močno zniža, pojavi se kvercetin. Pri neposrednem stiku moke z vodo se vsebnost rutina v tatarski ajdovi moki močno zniža  že po prvih 5 minutah delovanja (z 11,7 na 0,79 mg/100 g SS), pojavi pa se kvercetin (5,7 mg/100 g SS), v vzorcu moke ga je le 0,6 mg/100 g SS. Pri neposrednem stiku moke iz navadne ajde z vodo vsebnost rutina v moki (vzorec S) naraste v prvi uri z začetnih 0,0258 mg/g na 0,0263 mg/g SS (v začetnem času nekoliko manj enakomerno), v drugi uri stika moke in vode pa koncentracija rutina močno pade (na 0,0005 mg/g SS).  Ključne besede: navadna ajda, tatarska ajda, flavonoidi, rutin, kvercetin, mletje, testo


2014 ◽  
Vol 37 (5) ◽  
pp. 318-328 ◽  
Author(s):  
Fang-Yi Xu ◽  
Qing-Han Gao ◽  
Yu-Jie Ma ◽  
Xu-Dan Guo ◽  
Min Wang

Fagopyrum ◽  
2021 ◽  
Vol 38 (2) ◽  
pp. 43-53
Author(s):  
Blanka Vombergar

The concentration of flavonoids rutin and quercetin in flours of common and Tartary buckwheat was investigated. In Tartary buckwheat, concentration of rutin is much higher compared to common buckwheat. In Tartary buckwheat it was measured 1.17 to 1.75% rutin in dry matter, while in common buckwheat it was only 0.003%. After direct contact of buckwheat flour with water, different biochemical activities in Tartary buckwheat developed with rutin. After the time (5 minutes or two hours), the concentration of rutin is in the flour-water mixtures much lowered, and quercetin appeared. However, after quick initial changes, some rutin remained in flour-water mixtures even after 24 hours. In any way, after 24 hours of direct contact of flour particles with water, the concentration of quercetin is higher than that of rutin. It is established that the concentration of rutin in flour-water mixtures is the result of two processes. One is the release of rutin from grain structures and its dissolving in water, and the second is the release of rutin degrading enzymes from grain structures and their activity in solution. 


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Xia Wang ◽  
Tianliang Zhang

Tartary buckwheat, rich in bioactive components such as flavonoids, has been proved beneficial to human health and prevention from many diseases. However, its utilization is limited due to bitterness, roughness, and hardness. The present study was to develop a kind of Tartary buckwheat enriched steamed bread with blends of Tartary buckwheat flour, wheat flour, gluten, glucose oxidase, and pentosanase, using response surface methodology (RSM) to optimize the formula. The independent variables investigated in the present study were the additive amount of gluten, glucose oxidase, and pentosanase, with bread volume and sensory evaluation value as response variables. Based on a basic formula consisting of 250 g Tartary buckwheat flour, 250 g wheat flour, 15 g yeast, and 300 mL water, the obtained optimum formula was 41.20 g gluten, 1032 U glucose oxidase, and 56 U pentosanase. Gluten and GOD demonstrated statistically significant effects on Tartary buckwheat steamed bread volume and sensory evaluation values. The validation test results of the optimum formula, with relative error as 0.98% and 2.55%, were consistent with the theoretically predicted values, demonstrating the reliability of equation and effectiveness of RSM.


Foods ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 8 ◽  
Author(s):  
Hye-Rin Jin ◽  
Jin Yu ◽  
Soo-Jin Choi

Tartary buckwheat (Fagopyrum esculentum) is widely used in the food industry due to its functionality, which is related to its high rutin content. However, rutin is easily converted into quercetin by an endogenous enzyme during processing, resulting in a bitter taste. In this study, rutin-enriched Tartary buckwheat flour extracts (TBFEs) were obtained by hydrothermal treatments (autoclaving, boiling, and steaming), and their antioxidant activity was evaluated in human intestinal cells. The intestinal absorption of the hydrothermally treated TBFEs was also investigated using in vitro models of intestinal barriers and an ex vivo model of intestinal absorption. The results demonstrated that all of the hydrothermally treated TBFEs had increased rutin, total polyphenol, and total flavonoid contents, which enhance the in vitro and intracellular radical scavenging activities. Antioxidant enzyme activity, cellular uptake efficiency, in vitro intestinal transport efficacy, and ex vivo intestinal absorption of the hydrothermally treated TBFEs were also enhanced compared with those of native TBFE or standard rutin. These findings suggest the promising potential of hydrothermally treated TBFEs for a wide range of applications in the functional food industry.


Sign in / Sign up

Export Citation Format

Share Document