Transformation of Pinb-D1x to soft wheat produces hard wheat kernel texture

2020 ◽  
Vol 91 ◽  
pp. 102889 ◽  
Author(s):  
Xiaoling Ma ◽  
Hui Xue ◽  
Jiazhu Sun ◽  
Muhammad Sajjad ◽  
Jing Wang ◽  
...  
2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Sophie Held ◽  
Catrin E. Tyl ◽  
George A. Annor

Cold plasma is an emerging technology to improve microbiological safety as well as functionality of foods. This study compared the effect of radio frequency cold plasma on flour and dough properties of three members of the Triticeae tribe, soft as well as hard wheat (Triticum aestivum L.) and intermediate wheatgrass (Thinopyrum intermedium, IWG). These three flour types differ in their protein content and composition and were evaluated for their solubility, solvent retention capacity, starch damage, GlutoPeak and Farinograph profiles, and protein secondary structures. Plasma treatment resulted in dehydration of flours but did not change protein content or solubility. Farinograph water absorption increased for all flours after plasma treatment (from 56.5–61.1 before to 71.0–81.6%) and coincided with higher solvent retention capacity for water and sodium carbonate. Plasma treatment under our conditions was found to cause starch damage to the extent of 3.46–6.62% in all samples, explaining the higher solvent retention capacity for sodium carbonate. However, Farinograph properties were changed differently in each flour type: dough development time and stability time decreased for hard wheat and increased for soft wheat but remained unchanged in intermediate wheatgrass. GlutoPeak parameters were also affected differently: peak torque for intermediate wheatgrass increased from 32 to 39.5 GlutoPeak units but was not different for the other two flours. Soft wheat did not always aggregate after plasma treatment, i.e., did not aggregate within the measurement time. It was also the only flour where protein secondary structures were changed after plasma treatment, exhibiting an increase from 15.2 to 27.9% in β-turns and a decrease from 59.4 to 47.9% in β-sheets. While this could be indicative of a better hydrated gluten network, plasma-treated soft wheat was the only flour where viscoelastic properties were changed and extensibility decreased. Further research is warranted to elucidate molecular changes underlying these effects.


1976 ◽  
Vol 23 (1) ◽  
pp. 111-119 ◽  
Author(s):  
M. Ivan ◽  
D. J. Farrell

SUMMARY1. Three pigs prepared with re-entrant cannulae in the proximal duodenum and terminal ileum were used to study flow rate of nitrogen, and digestion and absorption of dry matter, nitrogen, gross energy and starch. The pigs were given a semi-purified diet, a hard wheat diet and a soft wheat diet. These were approximately isonitrogenous.2. Nitrogen content of insoluble dry matter of duodenal digesta was much higher on the semi-purified diet than on the wheat-based diets.3. Apparent digestibilities of dry matter, energy and nitrogen in the small intestine were in the order semi-purified diet > hard wheat > soft wheat although differences were not statistically significant. Similar results were obtained for total digestibility of these components.4. Absorption of most amino acids from the small intestine was higher for casein in the semi-purified diet than for wheat protein. Significantly more lysine, arginine, isoleucine and tyrosine were absorbed from hard than from soft wheat.5. With all diets there was almost complete digestion of starch in the small intestine.6. There was little digestion of nutrients in the large intestine, and thus digestibilities calculated from faecal analyses showed similar trends to those calculated from analyses of digesta from the terminal ileum. Most values compared favourably with those reported elsewhere for digestibilities of amino acids in wheat.7. It was concluded that casein was superior to the wheat proteins but that protein of hard wheat was of better quality than that of soft wheat when evaluated by ileal recovery of animo acids, due largely to a greater absorption of lysine.


2000 ◽  
Vol 77 (2) ◽  
pp. 163-168 ◽  
Author(s):  
C. S. Gaines ◽  
M. Ö. Raeker ◽  
M. Tilley ◽  
P. L. Finney ◽  
J. D. Wilson ◽  
...  

1976 ◽  
Vol 54 (6) ◽  
pp. 891-897 ◽  
Author(s):  
Michael Ivan ◽  
David J. Farrell

Four pigs prepared with re-entrant cannulas in the proximal duodenum and terminal ileum were used to study flow rates of total digesta, insoluble dry matter, nitrogen, and amino acids entering and leaving the small intestine. The pigs received a semipurified diet, a hard wheat diet, or a soft wheat diet. These were approximately isonitrogenous.A higher rate of passage of digesta through the proximal duodenum and terminal ileum were measured in pigs receiving the hard wheat diet. Peak flow of digesta at the duodenum of all pigs occurred at 1 h post feeding. Peak flow of digesta at the ileum occurred at 9 h post feeding on the soft wheat diet, but somewhat earlier on the hard wheat and semipurified diet. More nitrogen and essential amino acids flowed in the solid fraction of duodenal digesta during the first 2 h post feeding for the wheat diets and 4 h post feeding for the semipurified diet.It was concluded that flow rate of most nutrients from the stomach and through the small intestine of pigs is modified by the composition and texture of the food ingested. It is postulated that efficiency of mixing of digesta with digestive secretions in the stomach is a major factor influencing rate of flow.


2005 ◽  
Vol 85 (11) ◽  
pp. 1959-1965 ◽  
Author(s):  
Craig F Morris ◽  
Kim Garland Campbell ◽  
Garrison E King

2005 ◽  
Vol 46 (1) ◽  
pp. 66-74 ◽  
Author(s):  
B. Carré ◽  
N. Muley ◽  
J. Gomez ◽  
F.-X. Oury ◽  
E. Laffitte ◽  
...  

Foods ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 52
Author(s):  
Vinko Krstanović ◽  
Kristina Habschied ◽  
Krešimir Mastanjević

This paper examines the influence of the malting process of red hard wheat varieties (which have many characteristics of soft wheat varieties and represent a transitional form between durum and soft wheat). According to the values of total and soluble proteins and viscosity of wort these wheat varieties belong to the second malting quality group. To establish the individual response of each variety and estimate how the chosen varieties respond in groups to different process conditions, sixteen varieties were selected and malted according to the standard procedure (A), restrictive procedure (B), and intense procedure (C). Starting wheat, indicators of micromalting process success, and finished malts were analyzed. It was found that the restrictive procedure (B) gives poor results for the values of proteolysis performance parameters (soluble N, free amino nitrogen (FAN)) with simultaneous disturbance and values of cytolytic degradation (viscosity and filtration time) and extract yield. At the same time, this procedure lacks a stronger individual response of an individual variety to the process conditions during malting (F/C difference and extract yield). The optimal malting process for the specified assortment would include the modification of processes B and C in a way to alleviate the restrictive conditions in process B, or in a way to reduce the intensity of the decomposition in process C.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5874
Author(s):  
Yangyong Lv ◽  
Pingping Tian ◽  
Shuaibing Zhang ◽  
Jinshui Wang ◽  
Yuansen Hu

Previous research demonstrated that soft wheat cultivars have better post-harvest storage tolerance than harder cultivars during accelerated ageing. To better understand this phenomenon, a tandem mass tag-based quantitative proteomic analysis of soft wheat seeds was performed at different storage times during accelerated ageing (germination ratios of 97%, 45%, 28%, and 6%). A total of 1,010 proteins were differentially regulated, of which 519 and 491 were up- and downregulated, respectively. Most of the differentially expressed proteins were predicted to be involved in nutrient reservoir, enzyme activity and regulation, energy and metabolism, and response to stimulus functions, consistent with processes occurring in hard wheat during artificial ageing. Notably, defense-associated proteins including wheatwin-2, pathogenesis-related proteins protecting against fungal invasion, and glutathione S-transferase and glutathione synthetase participating in reactive oxygen species (ROS) detoxification, were upregulated compared to levels in hard wheat during accelerated ageing. These upregulated proteins might be responsible for the superior post-harvest storage-tolerance of soft wheat cultivars during accelerated ageing compared with hard wheat. Although accelerated ageing could not fully mimic natural ageing, our findings provided novel dynamic proteomic insight into soft wheat seeds during seed deterioration.


Sign in / Sign up

Export Citation Format

Share Document