A finite element parametric study on block shear failure of steel tension members

2004 ◽  
Vol 60 (11) ◽  
pp. 1615-1635 ◽  
Author(s):  
Cem Topkaya
2020 ◽  
Vol 47 (4) ◽  
pp. 418-427 ◽  
Author(s):  
K.K. Adewole ◽  
Oladejo O. Joy

This paper presents the finite-element (FE) block shear failure (BSF) deformation-to-fracture analysis. FE analysis reveals the following: BSF begins with bolt – bolt hole contact point compressive yielding and not the tensile or shear yielding reported in the literature. BSF does not result from the combination of the gauge tensile plane tensile deformation and the shear plane pure shear deformation alone as reported in the literature and codes. BSF results from compressive deformation of the bolt – bolt hole contact points, tensile deformation of bolt hole portions not in contact with the bolts, gauge tensile plane and edge distance tensile plane deformations in combination with pure shear deformation and a combined shear and tensile bending deformation of the portions of the shear planes near to and remote from the bolt – bolt hole contact points, respectively. This study provides a better understanding of the BSF mechanism, BSF total load-bearing areas, and various resistances to deformation that contribute to the block shear capacity.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1088
Author(s):  
Marta Kuříková ◽  
David Sekal ◽  
František Wald ◽  
Nadine Maier

This paper presents the behaviour and design procedure of bolted connections which tend to be sensitive to block shear failure. The finite element method is employed to examine the block shear failure. The research-oriented finite element method (RFEM) model is validated with the results of experimental tests. The validated model is used to verify the component-based FEM (CBFEM) model, which combines the analysis of internal forces by the finite element method and design of plates, bolts and welds by the component method (CM). The CBFEM model is verified by an analytical solution based on existing formulas. The method is developed for the design of generally loaded complicated joints, where the distribution of internal forces is complex. The resistance of the steel plates is controlled by limiting the plastic strain of plates and the strength of connectors, e.g., welds, bolts and anchor bolts. The design of plates at a post-critical stage is available to allow local buckling of slender plates. The prediction of the initial stiffness and the deformation capacity is included natively. Finally, a sensitivity study is prepared. The studied parameters include gusset plate thickness and pitch distance.


2010 ◽  
Vol 163-167 ◽  
pp. 274-278
Author(s):  
Wei Wei Sun ◽  
Feng Wei

A numerical investigation on the block shear failure behavior of coped beams with double welded clip angle connection was conducted. Parametric study was conducted based on the validated finite element model. The parameters included the web block aspect ratio and the connection rotational stiffness. Based on the mechanical model of double angle connection, the pitch and the beam element length-to-angle thickness (L/t) ratio of the outstanding leg were selected as two importance parameters to consider the effect of the connection rotational stiffness. The results of parametric study show that the connection rotational stiffness has a great influence on the block shear capacity of coped beams with double welded clip angle connection. This is contributed to the fact that for the connections with a smaller connection rotational stiffness, the shear stresses of the shear area were much less than those of the connections with a larger connection rotational stiffness.


2014 ◽  
Vol 4 (4) ◽  
pp. 26-33
Author(s):  
P.Deepak Kumar ◽  
◽  
Ishan Sharma ◽  
P.R. Maiti ◽  
◽  
...  

Author(s):  
Ah-Young Park ◽  
Satish Chaparala ◽  
Seungbae Park

Through-silicon via (TSV) technology is expected to overcome the limitations of I/O density and helps in enhancing system performance of conventional flip chip packages. One of the challenges for producing reliable TSV packages is the stacking and joining of thin wafers or dies. In the case of the conventional solder interconnections, many reliability issues arise at the interface between solder and copper bump. As an alternative solution, Cu-Cu direct thermo-compression bonding (CuDB) is a possible option to enable three-dimension (3D) package integration. CuDB has several advantages over the solder based micro bump joining, such as reduction in soldering process steps, enabling higher interconnect density, enhanced thermal conductivity and decreased concerns about intermetallic compounds (IMC) formation. Critical issue of CuDB is bonding interface condition. After the bonding process, Cu-Cu direct bonding interface is obtained. However, several researchers have reported small voids at the bonded interface. These defects can act as an initial crack which may lead to eventual fracture of the interface. The fracture could happen due to the thermal expansion coefficient (CTE) mismatch between the substrate and the chip during the postbonding process, board level reflow or thermal cycling with large temperature changes. In this study, a quantitative assessment of the energy release rate has been made at the CuDB interface during temperature change finite element method (FEM). A parametric study is conducted to analyze the impact of the initial crack location and the material properties of surrounding materials. Finally, design recommendations are provided to minimize the probability of interfacial delamination in CuDB.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3346
Author(s):  
Bora Gencturk ◽  
Hadi Aryan ◽  
Mohammad Hanifehzadeh ◽  
Clotilde Chambreuil ◽  
Jianqiang Wei

In this study, an investigation of the shear behavior of full-scale reinforced concrete (RC) beams affected from alkali–silica reactivity damage is presented. A detailed finite element model (FEM) was developed and validated with data obtained from the experiments using several metrics, including a force–deformation curve, rebar strains, and crack maps and width. The validated FEM was used in a parametric study to investigate the potential impact of alkali–silica reactivity (ASR) degradation on the shear capacity of the beam. Degradations of concrete mechanical properties were correlated with ASR expansion using material test data and implemented in the FEM for different expansions. The finite element (FE) analysis provided a better understanding of the failure mechanism of ASR-affected RC beam and degradation in the capacity as a function of the ASR expansion. The parametric study using the FEM showed 6%, 19%, and 25% reduction in the shear capacity of the beam, respectively, affected from 0.2%, 0.4%, and 0.6% of ASR-induced expansion.


Sign in / Sign up

Export Citation Format

Share Document