Cyclic behavior of shear-type hysteretic dampers with different cross-sectional shapes

2021 ◽  
Vol 187 ◽  
pp. 106964
Author(s):  
Hae-Yong Park ◽  
Jinwoo Kim ◽  
Susumu Kuwahara
2020 ◽  
Vol 10 (24) ◽  
pp. 8857
Author(s):  
Antonio Di Cesare ◽  
Felice Carlo Ponzo ◽  
Nicla Lamarucciola ◽  
Domenico Nigro

Passive energy dissipation systems are one of the most resilient solutions to mitigate the seismic risk of structures. In case of strong motions, they can confine the eventual damages into easily replaceable anti-seismic devices. The performance characteristics of nonlinear displacement dependent devices (NLD) shall be defined by the force-displacement cyclic behavior, as well as the expected number of cycles related to both the duration of the earthquake and to the fundamental frequency of the structural systems. The aims of this paper are the comparison between the dynamic results of two different experimental campaigns performed on NLDs included in dissipative bracing systems and the assessment of the reliability of quasi-static testing procedures proposed by current seismic codes for type tests and factory production control tests. The number of cycles under the design earthquake of hysteretic dampers were experimentally evaluated through shaking table testing. Two experimental case studies of a two-story steel frame and of a three-story post-tensioned timber frame both with bracing systems including flexural steel dampers, hysteretic dampers (HDs), and U-shaped flexural plates (UFPs) respectively, were analyzed. Controlled-displacement tests of NLDs were performed considering quasi-static loading procedures specified by codes. Shaking table tests were carried out considering almost the same seismic sequence composed by a set of seven natural earthquakes at increasing peak ground acceleration (PGA) levels. More than one hundred inelastic cycles were experimentally recorded from dynamic tests before the failure of devices in both cases. In line with American standards testing requirements, the number of cycles at the design PGA level, estimated from shaking table tests and from non-linear dynamic analyses, shows a decreasing trend with the increase of ductility demand.


1985 ◽  
Vol 1 (2) ◽  
pp. 203-238 ◽  
Author(s):  
Egor P. Popov ◽  
Navin R. Amin ◽  
Jason J. C. Louie ◽  
Roy M. Stephen

A series of experiments were conducted in order to verify the design criteria for beam-column joints under extreme seismic conditions for a 47-story building in San Francisco. The half-scale cruciform specimens were exceptionally large requiring 18 in. deep sections. The overall size of the specimens was the largest ever tested in the U.S. for this kind of application. The data on the behavior of such large moment-resisting joints under severe cyclic loading are very limited. The experimental evidence clearly supports the use of stiffeners and doubler plates at the joints for the cross-sectional geometries tested. The results are of direct relevance to seismic design of many steel buildings.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Chayanon Hansapinyo ◽  
Chinnapat Buachart ◽  
Preeda Chaimahawan

This paper presents an experimental study on the cyclic behavior of fifteen concrete-filled steel tubular columns subjected to vertical cyclic loading. All test samples’ cross-sectional area is 75 × 75 mm2square, and they are 500 mm long. The main variables in the test are the thickness of the steel tube (1.8 and 3.0 mm with the width-to-thickness ratios (b/t) of 41.7 and 25), the strength of the infilled concrete (no-fill, 23 MPa, and 42 MPa), and the inclined angle (0, 4, and 9 degrees). The results show that all samples failed due to local buckling in compression followed by tearing of the steel tube in tension. The inclination angles of 4 and 9 degrees decreased the vertical compressive capacity of the 1.8 mm vertical hollowed steel column by 34 and 39 percent, respectively. However, the infilled concrete and thicker tube (3.0 mm) could substantially reduce the adverse effect of the inclination angle. The compressive ductility of the hollowed column with the thinner tube was significantly enhanced by the infilled concrete as well.


1986 ◽  
Vol 71 ◽  
Author(s):  
Kevin S. Jones ◽  
S. Prussin

AbstractPlan-view and 90° cross-sectional TEM examination was used to investigate the correlation between the type of amorphous layer produced and the resulting defect structure observed upon annealing. Both <100> and <111> Si wafers were ion implanted with high energy (190 keV) arsenic over a range of doses(1 × 1015/cm2 to 5 × 1015/cm2). A Wayflow endstation was used allowing ion beam induced epitaxial crystallization (IBIEC)[8] or dynamic annealing of the sample to occur. Implanted <111> Si is shown to form a continuous amorphous layer up to the surface, while <100> implanted Si forms a buried amorphous layer. The regrowth of the buried x-layer by furnace annealing is shown to be responsible for the formation of shear type dislocation loops at the interface where the two x/c regrowth fronts meet (catagory IV defects).[7] However if the buried layer is regrown by dynamic annealing a different structure results.In addition to using <111> wafers, other parameter changes which resulted in the formation of surface amorphous layers included decreasing the implant energy from 190 keV to 100 keV, or implanting the wafer at 77K instead of using the Wayflow endstation. Regrowth of the surface amorphous layers produced by these changes did not result in the formation of shear type dislocation loops. Further annealing of the 100 keV Wayflow implant and the 190 keV 77K implant at 900°C for 30 minutes resulted in the formation of small prismatic extrinsic dislocation loops beneath the location of the original amorphous/crystalline interface (catagory II defects).[71]


Author(s):  
S.F. Stinson ◽  
J.C. Lilga ◽  
M.B. Sporn

Increased nuclear size, resulting in an increase in the relative proportion of nuclear to cytoplasmic sizes, is an important morphologic criterion for the evaluation of neoplastic and pre-neoplastic cells. This paper describes investigations into the suitability of automated image analysis for quantitating changes in nuclear and cytoplasmic cross-sectional areas in exfoliated cells from tracheas treated with carcinogen.Neoplastic and pre-neoplastic lesions were induced in the tracheas of Syrian hamsters with the carcinogen N-methyl-N-nitrosourea. Cytology samples were collected intra-tracheally with a specially designed catheter (1) and stained by a modified Papanicolaou technique. Three cytology specimens were selected from animals with normal tracheas, 3 from animals with dysplastic changes, and 3 from animals with epidermoid carcinoma. One hundred randomly selected cells on each slide were analyzed with a Bausch and Lomb Pattern Analysis System automated image analyzer.


Author(s):  
Henry I. Smith ◽  
D.C. Flanders

Scanning electron beam lithography has been used for a number of years to write submicrometer linewidth patterns in radiation sensitive films (resist films) on substrates. On semi-infinite substrates, electron backscattering severely limits the exposure latitude and control of cross-sectional profile for patterns having fundamental spatial frequencies below about 4000 Å(l),Recently, STEM'S have been used to write patterns with linewidths below 100 Å. To avoid the detrimental effects of electron backscattering however, the substrates had to be carbon foils about 100 Å thick (2,3). X-ray lithography using the very soft radiation in the range 10 - 50 Å avoids the problem of backscattering and thus permits one to replicate on semi-infinite substrates patterns with linewidths of the order of 1000 Å and less, and in addition provides means for controlling cross-sectional profiles. X-radiation in the range 4-10 Å on the other hand is appropriate for replicating patterns in the linewidth range above about 3000 Å, and thus is most appropriate for microelectronic applications (4 - 6).


Author(s):  
Michel Troyonal ◽  
Huei Pei Kuoal ◽  
Benjamin M. Siegelal

A field emission system for our experimental ultra high vacuum electron microscope has been designed, constructed and tested. The electron optical system is based on the prototype whose performance has already been reported. A cross-sectional schematic illustrating the field emission source, preaccelerator lens and accelerator is given in Fig. 1. This field emission system is designed to be used with an electron microscope operated at 100-150kV in the conventional transmission mode. The electron optical system used to control the imaging of the field emission beam on the specimen consists of a weak condenser lens and the pre-field of a strong objective lens. The pre-accelerator lens is an einzel lens and is operated together with the accelerator in the constant angular magnification mode (CAM).


Author(s):  
M.A. Parker ◽  
K.E. Johnson ◽  
C. Hwang ◽  
A. Bermea

We have reported the dependence of the magnetic and recording properties of CoPtCr recording media on the thickness of the Cr underlayer. It was inferred from XRD data that grain-to-grain epitaxy of the Cr with the CoPtCr was responsible for the interaction observed between these layers. However, no cross-sectional TEM (XTEM) work was performed to confirm this inference. In this paper, we report the application of new techniques for preparing XTEM specimens from actual magnetic recording disks, and for layer-by-layer micro-diffraction with an electron probe elongated parallel to the surface of the deposited structure which elucidate the effect of the crystallographic structure of the Cr on that of the CoPtCr.XTEM specimens were prepared from magnetic recording disks by modifying a technique used to prepare semiconductor specimens. After 3mm disks were prepared per the standard XTEM procedure, these disks were then lapped using a tripod polishing device. A grid with a single 1mmx2mm hole was then glued with M-bond 610 to the polished side of the disk.


Sign in / Sign up

Export Citation Format

Share Document