scholarly journals Connexin 43 deficiency accelerates skin wound healing and extracellular matrix remodeling in mice

2015 ◽  
Vol 79 (1) ◽  
pp. 50-56 ◽  
Author(s):  
Bruno Cogliati ◽  
Mathieu Vinken ◽  
Tereza C. Silva ◽  
Cintia M.M. Araújo ◽  
Thiago P.A. Aloia ◽  
...  
2018 ◽  
Vol 5 (4) ◽  
pp. 91 ◽  
Author(s):  
Joris van Dongen ◽  
Martin Harmsen ◽  
Berend van der Lei ◽  
Hieronymus Stevens

The skin is the largest organ of the human body and is the first line of defense against physical and biological damage. Thus, the skin is equipped to self-repair and regenerates after trauma. Skin regeneration after damage comprises a tightly spatial-temporally regulated process of wound healing that involves virtually all cell types in the skin. Wound healing features five partially overlapping stages: homeostasis, inflammation, proliferation, re-epithelization, and finally resolution or fibrosis. Dysreguled wound healing may resolve in dermal scarring. Adipose tissue is long known for its suppressive influence on dermal scarring. Cultured adipose tissue-derived stromal cells (ASCs) secrete a plethora of regenerative growth factors and immune mediators that influence processes during wound healing e.g., angiogenesis, modulation of inflammation and extracellular matrix remodeling. In clinical practice, ASCs are usually administered as part of fractionated adipose tissue i.e., as part of enzymatically isolated SVF (cellular SVF), mechanically isolated SVF (tissue SVF), or as lipograft. Enzymatic isolation of SVF obtained adipose tissue results in suspension of adipocyte-free cells (cSVF) that lack intact intercellular adhesions or connections to extracellular matrix (ECM). Mechanical isolation of SVF from adipose tissue destructs the parenchyma (adipocytes), which results in a tissue SVF (tSVF) with intact connections between cells, as well as matrix. To date, due to a lack of well-designed prospective randomized clinical trials, neither cSVF, tSVF, whole adipose tissue, or cultured ASCs can be indicated as the preferred preparation procedure prior to therapeutic administration. In this review, we present and discuss current literature regarding the different administration options to apply ASCs (i.e., cultured ASCs, cSVF, tSVF, and lipografting) to augment dermal wound healing, as well as the available indications for clinical efficacy.


2021 ◽  
pp. 153537022110420
Author(s):  
Qing Chu ◽  
Ying Xiao ◽  
Xin Song ◽  
Y James Kang

A significant amount of cardiomyocytes in subendocardial region survive from ischemic insults. In order to understand the mechanism by which these cardiomyocytes survive, the present study was undertaken to examine changes in these surviving cardiomyocytes and their extracellular matrix. Male C57BL/6 mice aged 8–12 weeks old were subjected to a permanent left anterior descending coronary artery ligation to induce ischemic injury. The hearts were collected at 1, 4, 7, or 28 days after the surgery and examined by histology. At day 1 after left anterior descending ligation, there was a significant loss of cardiomyocytes through apoptosis, but a proportion of cardiomyocytes were surviving in the subendocardial region. The surviving cardiomyocytes were gradually changed from rod-shaped to round-shaped, and appeared disconnected. Connexin 43, an important gap junction protein, was significantly decreased, and collagen I and III deposition was significantly increased in the extracellular matrix. Furthermore, lysyl oxidase, a copper-dependent amine oxidase catalyzing the cross-linking of collagens, was significantly increased in the extracellular matrix, paralleled with the surviving cardiomyocytes. Inhibition of lysyl oxidase activity reduced the number of surviving cardiomyocytes. Thus, the extracellular matrix remodeling is correlated with the deformation of cardiomyocytes, and the electrical disconnection between the surviving cardiomyocytes due to connexin 43 depletion and the increase in lysyl oxidase would help these deformed cardiomyocytes survive under ischemic conditions.


2015 ◽  
Vol 4 (8) ◽  
pp. 479-489 ◽  
Author(s):  
Priscilla S. Briquez ◽  
Jeffrey A. Hubbell ◽  
Mikaël M. Martino

F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 787 ◽  
Author(s):  
Sanna-Maria Karppinen ◽  
Ritva Heljasvaara ◽  
Donald Gullberg ◽  
Kaisa Tasanen ◽  
Taina Pihlajaniemi

The efficient healing of skin wounds is crucial for securing the vital barrier function of the skin, but pathological wound healing and scar formation are major medical problems causing both physiological and psychological challenges for patients. A number of tightly coordinated regenerative responses, including haemostasis, the migration of various cell types into the wound, inflammation, angiogenesis, and the formation of the extracellular matrix, are involved in the healing process. In this article, we summarise the central mechanisms and processes in excessive scarring and acute wound healing, which can lead to the formation of keloids or hypertrophic scars, the two types of fibrotic scars caused by burns or other traumas resulting in significant functional or aesthetic disadvantages. In addition, we discuss recent developments related to the functions of activated fibroblasts, the extracellular matrix and mechanical forces in the wound environment as well as the mechanisms of scarless wound healing. Understanding the different mechanisms of wound healing is pivotal for developing new therapies to prevent the fibrotic scarring of large skin wounds.


2019 ◽  
Vol 47 (6) ◽  
pp. 1679-1687
Author(s):  
Mavis A.A. Tenkorang ◽  
Upendra Chalise ◽  
Michael J. Daseke, II ◽  
Shelby R. Konfrst ◽  
Merry L. Lindsey

Myocardial Infarction (MI) initiates a series of wound healing events that begins with up-regulation of an inflammatory response and culminates in scar formation. The extracellular matrix (ECM) is intricately involved in all stages from initial break down of existing ECM to synthesis of new ECM to form the scar. This review will summarize our current knowledge on the processes involved in ECM remodeling after MI and identify the gaps that still need to be filled.


Sign in / Sign up

Export Citation Format

Share Document