C,N and S-doped TiO2-characterization and photocatalytic performance for rose bengal dye degradation under day light

2018 ◽  
Vol 6 (5) ◽  
pp. 5763-5770 ◽  
Author(s):  
B. Malini ◽  
G. Allen Gnana Raj
2019 ◽  
Vol 493 ◽  
pp. 87-93 ◽  
Author(s):  
Surjeet Chahal ◽  
Neha Rani ◽  
Ashok Kumar ◽  
Parmod Kumar

Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3948
Author(s):  
Lingfang Qiu ◽  
Zhiwei Zhou ◽  
Mengfan Ma ◽  
Ping Li ◽  
Jinyong Lu ◽  
...  

Novel visible-light responded aluminosilicophosphate-5 (SAPO-5)/g-C3N4 composite has been easily constructed by thermal polymerization for the mixture of SAPO-5, NH4Cl, and dicyandiamide. The photocatalytic activity of SAPO-5/g-C3N4 is evaluated by degrading RhB (30 mg/L) under visible light illumination (λ > 420 nm). The effects of SAPO-5 incorporation proportion and initial RhB concentration on the photocatalytic performance have been discussed in detail. The optimized SAPO-5/g-C3N4 composite shows promising degradation efficiency which is 40.6% higher than that of pure g-C3N4. The degradation rate improves from 0.007 min−1 to 0.022 min−1, which is a comparable photocatalytic performance compared with other g-C3N4-based heterojunctions for dye degradation. The migration of photo-induced electrons from g-C3N4 to the Al site of SAPO-5 should promote the photo-induced electron-hole pairs separation rate of g-C3N4 efficiently. Furthermore, the redox reactions for RhB degradation occur on the photo-induced holes in the g-C3N4 and Al sites in SAPO-5, respectively. This achievement not only improves the photocatalytic activity of g-C3N4 efficiently, but also broadens the application of SAPOs in the photocatalytic field.


2020 ◽  
Vol 20 (9) ◽  
pp. 5426-5432
Author(s):  
G. Gnanamoorthy ◽  
M. Muthukumaran ◽  
P. Varun Prasath ◽  
V. Karthikeyan ◽  
V. Narayanan ◽  
...  

Photocatalysts provide excellent potential for the full removal of organic chemical pollutants as an environmentally friendly technology. It has been noted that under UV-visible light irradiation, nanostructured semiconductor metal oxides photocatalysts can degrade different organic pollutants. The Sn6SiO8/rGO nanocomposite was synthesized by a hydrothermal method. The Sn6SiO8 nanoparticles hexagonal phase was confirmed by XRD and functional groups were analyzed by FT-IR spectroscopy. The bandgap of Sn6SiO8 nanoparticles (NPs) and Sn6SiO8/GO composites were found to be 2.7 eV and 2.5 eV, respectively. SEM images of samples showed that the flakes like morphology. This Sn6SiO8/rGO nanocomposite was testing for photocatalytic dye degradation of MG under visible light illumination and excellent response for the catalysts. The enhancement of photocatalytic performance was mainly attributed to the increased light absorption, charge separation efficiency and specific surface area, proved by UV-vis DRS. Further, the radical trapping experiments revealed that holes (h+) and superoxide radicals (·O−2) were the main active species for the degradation of MG, and a possible photocatalytic mechanism was discussed.


RSC Advances ◽  
2016 ◽  
Vol 6 (97) ◽  
pp. 94361-94364 ◽  
Author(s):  
Hongwei Huang ◽  
Ke Xiao ◽  
Fan Dong ◽  
Jinjian Wang ◽  
Xin Du ◽  
...  

Sulfur doping simultaneously endows the wide-band-gap Bi2O2CO3 promoted band energy structure and charge separation achieving enhanced visible-light photocatalytic performance for dye degradation and NO removal.


Microbiology ◽  
2022 ◽  
Vol 168 (1) ◽  
Author(s):  
Minghui Zhou ◽  
Yan Zhang ◽  
Yajun Chen ◽  
Fangyan Zhang ◽  
Daihu Yang

Aspergillus niger TF05 was applied to decolorize Rose Bengal dye. The effects of carbon source, nitrogen source, metal ion and spore concentration on Rose Bengal treatment with A. niger TF05 were studied. A Plackett–Burman design (PBD) and a uniform design (UD) were used to optimize the decolorization conditions of A. niger TF05 and enhance its decolorization effect. The mechanism of Rose Bengal decolorization by A. niger TF05 was examined by analysing degradation products via UV–visible light spectroscopy, IR spectroscopy and GC-MS. The best decolorization effect was achieved in the single factor test with glucose and ammonium chloride as carbon and nitrogen sources, respectively. Mg2+ was an essential ion that could improve the mould ball state and adsorption efficiency if the spore concentration was maintained at 106 spores ml–1. The optimal decolorization conditions obtained using the PBD and UD methods were 11.5 g l−1 glucose, 6.5 g l−1 ammonium chloride, 0.4 g l−1 magnesium sulphate, pH 5.8, 28 °C, 140 r.p.m. rotational speed, 0.18 g l−1 dye concentration, 0.5 ml of inocula and 120 h decolorization time. Under these conditions, the maximum decolorization rate was 106%. Spectral analysis suggested that the absorption peak of the product changed clearly after decolorization; GC-MS analysis revealed that the intermediate product tetrachlorophthalic anhydride formed after decolorization. The combined use of the PBD and UD methods can optimize multi-factor experiments. A. niger TF05 decolorized Rose Bengal during intracellular enzymatic degradation after adsorption.


Sign in / Sign up

Export Citation Format

Share Document