Synthesis of peroxymonosulfate composite catalyst (Fe0/Fe3O4/biochar) using waterworks sludge and walnut shell for the degrading methylene blue

Author(s):  
Yanping Zhang ◽  
Peng Xiangshi ◽  
Jiayu Tian ◽  
Fen Li ◽  
Xuteng Fan ◽  
...  
2020 ◽  
Vol 81 (7) ◽  
pp. 1494-1506
Author(s):  
Maad F. Al Juboury ◽  
Musa H. Alshammari ◽  
Mohammed R. Al-Juhaishi ◽  
Laith A. Naji ◽  
Ayad A. H. Faisal ◽  
...  

Abstract To apply the principles of sustainability, this study aims to prepare the composite sorbent from mixing of solid wastes that resulted from activities of treatment plants for wastewater and water supply. The manufacturing process depends on the mixing of sewage sludge with waterworks sludge at different proportions and the best mixture is modified by ferric nitrate solution. The prepared composite sorbent was evaluated as permeable reactive barrier (PRB) in the capturing of methylene blue (MB) dye presented in the simulated groundwater. Results proved that the suitable mixture of composite sorbent consisting of 0.25 g sewage sludge with 0.75 g waterworks sludge coated with aqueous solution of 2 g of Fe(NO3)2 achieved the maximum sorption capacity. In comparison with Freundlich model, Langmuir expression described the sorption measurements in a well manner; so, the chemisorption is governed by the removal of MB with maximum adsorption capacity reached to 268.98 mg/g. Kinetic measurements could be more representative by pseudo-first-order model and this means that the sorption process is supported by physical forces. Finally, the effects of inlet concentrations and bed thickness on the migration of MB front were simulated in an efficient manner by COMSOL Multiphysics 3.5a package with root mean squared errors not in excess of 0.152.


Fuel ◽  
2021 ◽  
pp. 122624
Author(s):  
Rauf Foroutan ◽  
Seyed Jamaleddin Peighambardoust ◽  
Reza Mohammadi ◽  
Seyed Hadi Peighambardoust ◽  
Bahman Ramavandi

2020 ◽  
Vol 12 (7) ◽  
pp. 2866
Author(s):  
Sangbin Lee ◽  
Jae-Woo Park

Hematite (α-Fe2O3)/graphitic carbon nitride (g-C3N4) nanofilm catalysts were synthesized on fluorine-doped tin oxide glass by hydrothermal and chemical vapor deposition. Scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analyses of the synthesized catalyst showed that the nanoparticles of g-C3N4 were successfully deposited on α-Fe2O3 nanofilm. The methylene blue degradation efficiency of the α-Fe2O3/g-C3N4 composite catalyst was 2.6 times greater than that of the α-Fe2O3 single catalyst under ultraviolet (UV) irradiation. The methylene blue degradation rate by the α-Fe2O3/g-C3N4 catalyst increased by 6.5 times after 1 mM of hydrogen peroxide (H2O2) was added. The photo-Fenton reaction of the catalyst, UV, and H2O2 greatly increased the methylene blue degradation. The results from the scavenger experiment indicated that the main reactants in the methylene blue decomposition reaction are superoxide radicals photocatalytically generated by g-C3N4 and hydroxyl radicals generated by the photo-Fenton reaction. The α-Fe2O3/g-C3N4 nanofilm showed excellent reaction rate constants at pH 3 (Ka = 6.13 × 10−2 min−1), and still better efficiency at pH 7 (Ka = 3.67 × 10−2 min−1), compared to other methylene blue degradation catalysts. As an immobilized photo-Fenton catalyst without iron sludge formation, nanostructured α-Fe2O3/g-C3N4 are advantageous for process design compared to particle-type catalysts.


2018 ◽  
Vol 80 (4) ◽  
Author(s):  
Ghani Ur Rehman ◽  
A. F. Ismail ◽  
P. S. Goh ◽  
M. Rezaei-Dasht Arzhandi ◽  
N. Ismail

Methylene blue (MB) is one of the industrial used organic dye and recalcitrant pollutant which creates a serious water pollution. Among the available techniques, photo degradation using light irradiation is one of the desirable choice to treat waste water. In this regard, we synthesized a binary nanocomposite of magnetite decorated with graphene oxide sheet (Fe3O4@GO) with modification of tetraethyl orthosilicate (TEOS) and 3-Aminopropyl triethoxysilane (APTES) by mechanical stirring method. The prepared nanocomposite was tested as a potential heterogeneous catalyst for degradation of methylene blue (MB) under UV irradiation. The synthesized nanoparticles were characterized by using X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Fourier transform infrared (FTIR), Thermogravimetric Analysis (TGA), and Energy-dispersive X-ray spectroscopy (EDX) techniques. The characterizations confirm the successful synthesis of the nanocomposite. The photocatalytic activity of the catalysts was gradually enhanced with time intervals. The maximum MB removal efficiency of 70.06 % was achieved over Fe3O4@GO composite catalyst, remarkably higher than using pure Fe3O4 (57.56 %). The newly developed materials was successfully recovered using an external magnet.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Ranxiao Tang ◽  
Chong Dai ◽  
Chao Li ◽  
Weihua Liu ◽  
Shutao Gao ◽  
...  

Walnut shell (WS), as an economic and environmental-friendly adsorbent, was utilized to remove methylene blue (MB) from aqueous solutions. The effects of WS particle size, solution pH, adsorbent dosage and contact time, and concentration of NaCl on MB removal were systematically investigated. Under the optimized conditions (i.e., contact time ~ 2 h, pH ~ 6, particle size ~ 80 mesh, dye concentration 20 mg/L, and 1.25 g/L adsorbent), the removal percentages can achieve ~97.1%, indicating WS was a promising absorbent to remove MB. Other supplementary experiments, such as Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and Brunauer-Emmett-Teller (BET) method, were also employed to understand the adsorption mechanisms. FTIR confirmed that the successful adsorption of MB on WS particles was through functional groups of WS. Using DLS method, the interactions between WS particles and dyes under various pH were investigated, which can be ascribed to the electrostatic forces. Kinetic data can be well fitted by the pseudo-second-order model, indicating a chemical adsorption. The adsorption isotherms were well described by both Langmuir and Freundlich models. Dubinin-Radushkevich model also showed that the adsorption process was a chemical adsorption. Thermodynamic data indicated that the adsorption was spontaneous, exothermic, and favorable at room temperature.


Sign in / Sign up

Export Citation Format

Share Document