scholarly journals APTES AND TEOS MODIFIED BINARY RECYCLABLE HYBRID FE3O4@GO NANOCOMPOSITE FOR PHOTOCATALYTIC DYE REMOVAL

2018 ◽  
Vol 80 (4) ◽  
Author(s):  
Ghani Ur Rehman ◽  
A. F. Ismail ◽  
P. S. Goh ◽  
M. Rezaei-Dasht Arzhandi ◽  
N. Ismail

Methylene blue (MB) is one of the industrial used organic dye and recalcitrant pollutant which creates a serious water pollution. Among the available techniques, photo degradation using light irradiation is one of the desirable choice to treat waste water. In this regard, we synthesized a binary nanocomposite of magnetite decorated with graphene oxide sheet (Fe3O4@GO) with modification of tetraethyl orthosilicate (TEOS) and 3-Aminopropyl triethoxysilane (APTES) by mechanical stirring method. The prepared nanocomposite was tested as a potential heterogeneous catalyst for degradation of methylene blue (MB) under UV irradiation. The synthesized nanoparticles were characterized by using X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Fourier transform infrared (FTIR), Thermogravimetric Analysis (TGA), and Energy-dispersive X-ray spectroscopy (EDX) techniques. The characterizations confirm the successful synthesis of the nanocomposite. The photocatalytic activity of the catalysts was gradually enhanced with time intervals. The maximum MB removal efficiency of 70.06 % was achieved over Fe3O4@GO composite catalyst, remarkably higher than using pure Fe3O4 (57.56 %). The newly developed materials was successfully recovered using an external magnet.

Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1151
Author(s):  
K. Jagajjanani Rao ◽  
Tarangini Korumilli ◽  
Akshaykumar KP ◽  
Stanisław Wacławek ◽  
Miroslav Černík ◽  
...  

We have fabricated ZnO nanoflake structures using degummed silk fibers as templates, via soaking and calcining the silk fibers bearing ZnO nanoparticles at 150 °C for 6 h. The obtained ZnO nanostructures were characterized using scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), and UV-vis and fluorescence spectroscopic analysis. The size (~500–700 nm) in length and thicknesses (~60 nm) of ZnO nanoflakes were produced. The catalysis performances of ZnO nanoflakes on silk fibers (ZnSk) via photo-degradation of naphthalene (93% in 256 min), as well as Rose Bengal dye removal (~1.7 mM g−1) through adsorption from aqueous solution, were practically observed. Further, ZnSk displayed superb antibacterial activity against the tested model gram-negative Escherichia coli bacterium. The produced ZnSk has huge scope to be used for real-world water contaminants remediation applications.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 558
Author(s):  
Wenhui Zhu ◽  
Caiyun Zhang ◽  
Yali Chen ◽  
Qiliang Deng

Photothermal materials are attracting more and more attention. In this research, we synthesized a ferrocene-containing polymer with magnetism and photothermal properties. The resulting polymer was characterized by Fourier-transform infrared (FT-IR), vibrating sample magnetometer (VSM), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Its photo-thermocatalytic activity was investigated by choosing methylene blue (MB) as a model compound. The degradation percent of MB under an irradiated 808 nm laser reaches 99.5% within 15 min, and the degradation rate is 0.5517 min−1, which is 145 times more than that of room temperature degradation. Under irradiation with simulated sunlight, the degradation rate is 0.0092 min−1, which is approximately 2.5 times more than that of room temperature degradation. The present study may open up a feasible route to degrade organic pollutants.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Patcharanan Junploy ◽  
Titipun Thongtem ◽  
Somchai Thongtem ◽  
Anukorn Phuruangrat

SrSn(OH)6 precursors synthesized by a cyclic microwave radiation (CMR) process were calcined at 900°C for 3 h to form rod-like SrSnO3. Further, the rod-like SrSnO3 and AgNO3 in ethylene glycol (EG) were ultrasonically vibrated to form rod-like Ag/SrSnO3 composites, characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electron microscopy (EM), Fourier transform infrared (FTIR) spectroscopy, and UV-visible analysis. The photocatalyses of rod-like SrSnO3, 1 wt%, 5 wt%, and 10 wt% Ag/SrSnO3 composites were studied for degradation of methylene blue (MB, C16H18N3SCl) dye under ultraviolet (UV) radiation. In this research, the 5 wt% Ag/SrSnO3 composites showed the highest activity, enhanced by the electron-hole separation process. The photoactivity became lower by the excessive Ag nanoparticles due to the negative effect caused by reduction in the absorption of UV radiation.


2014 ◽  
Vol 608 ◽  
pp. 224-229 ◽  
Author(s):  
Potjanaporn Chaengchawi ◽  
Karn Serivalsatit ◽  
Pornapa Sujaridworakun

A visible-light responsive CdS/ZnO nanocomposite photocatalyst was successfully synthesized by precipitation of CdS nanoparticles, using Cd (NO3)2 and Na2S as starting materials, on ZnO nanoparticles and then calcined at 400°C for 2 hours. The effects of the mole ratio of CdS and ZnO in the composites on their phase, morphology, and surface area were investigated by X-ray Diffraction (XRD), scanning electron microscope (SEM), Brunauer Emmett Teller method (BET), respectively. The photocatalytic degradation of methylene blue solution in the presence of composite products under visible-light irradiation was investigated. The results showed that the mole ratio of CdS and ZnO played a significant role on photocatalytic performance. The highest photocatalytic activity was obtained from the CdS/ZnO nanocomposite with mole ratio of 1:4, which is higher than that of pure CdS and pure ZnO.


2020 ◽  
Vol 82 (11) ◽  
pp. 2415-2424
Author(s):  
S. Mokhtari ◽  
N. Dokhan ◽  
S. Omeiri ◽  
B. Berkane ◽  
M. Trari

Abstract The hematite (α-Fe2O3) nanostructures were synthesized by thermal oxidation of metal at 500 °C under atmospheric pressure. We studied the effect of the electrochemical pretreatment of the substrate before calcinations and its impact on the morphology, crystalline structure, lattice microstructural, and optical properties of α-Fe2O3. Uniform nanosheets were observed on the sample surface after calcination; their dimension and morphology were accentuated by the pretreatment, as confirmed by the SEM images. The characteristics of the nanostructures, analyzed by X-ray diffraction (XRD), revealed a rhombohedral symmetry with the space group R-3c and lattice constants: a = 0.5034 nm and c = 1.375 nm. The average crystallite size and strain, determined from the Williamson-Hall (W-H) plot, showed substantial variations after the substrate pretreatment. The Raman spectroscopy confirmed the changes in the crystal properties of the hematite submitted to pretreatment. The diffuse reflectance allowed to evaluate the optical gap which lies between 1.2 and 1.97 eV, induced by the electrochemical processing. The photocatalytic activity of α-Fe2O3 films was assessed by the degradation of methylene blue (MB) under LED light; 15% enhancement of the degradation for the pretreated specimens was noticed.


2014 ◽  
Vol 896 ◽  
pp. 541-544
Author(s):  
Is Fatimah ◽  
N. Nunani Yuyun

ZnO-SiO2/Laponite was prepared by sol-gel preparation procedure consit of SiO2 pillarization to laponite followed by ZnO dispersion by using zinc acetate as precursor. The obtained material was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), diffuse reflectance UV-Visible (DRUV-Vis) and N2 adsorption-desorption analysis. The photocatalytic performance of the amterial in methylene blue decolorization was also investigated. Compared with ZnO-SiO2 nanoparticles, it is concluded that ZnO-SiO2/Laponite possess higher photocatalytic activity which obey Temkin isotherm model.


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1341 ◽  
Author(s):  
Ruiqi Wang ◽  
Duanyang Li ◽  
Hailong Wang ◽  
Chenglun Liu ◽  
Longjun Xu

S-doped Bi2MoO6 nanosheets were successfully synthesized by a simple hydrothermal method. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), N2 adsorption–desorption isotherms, Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), elemental mapping spectroscopy, photoluminescence spectra (PL), X-ray photoelectron spectroscopy (XPS), and UV-visible diffused reflectance spectra (UV-vis DRS). The photo-electrochemical performance of the samples was investigated via an electrochemical workstation. The S-doped Bi2MoO6 nanosheets exhibited enhanced photocatalytic activity under visible light irradiation. The photo-degradation rate of Rhodamine B (RhB) by S-doped Bi2MoO6 (1 wt%) reached 97% after 60 min, which was higher than that of the pure Bi2MoO6 and other S-doped products. The degradation rate of the recovered S-doped Bi2MoO6 (1 wt%) was still nearly 90% in the third cycle, indicating an excellent stability of the catalyst. The radical-capture experiments confirmed that superoxide radicals (·O2−) and holes (h+) were the main active substances in the photocatalytic degradation of RhB by S-doped Bi2MoO6.


2018 ◽  
Vol 149 ◽  
pp. 01087 ◽  
Author(s):  
F. Amor ◽  
A. Diouri ◽  
I. Ellouzi ◽  
F. Ouanji ◽  
M. Kacimi

This work establishes a simple method for synthesising layered double hydroxides (LDHs) powders with coprecipitation. The characteristics of the samples were investigated y X-ray diffraction (XRD), scanning electron microscopy (SEM) and spectrophotometer UV–Vis (DRS). Non-uniform distribution was shown for LDHs samples by SEM. Photocatalytic efficiencies were tested using methylene blue (MB) dye as a model contaminant under UV irradiation. In particular, Zn–Al-Ti LDH exhibited an excellent performance towards MB degradation compared with commercial TiO2 nanoparticles. Methylene blue removal percentage was reached at almost 100%, whereas commercial TiO2 reached a removal rate of only 66% under the same conditions within 20 min. The aim of the current work is to prepare Zn-Al-Ti layered double hydroxides nanocomposite and to evaluate their photocatalytic activity in the removal of methylene blue under UV irradiation.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Rohan S. Dassanayake ◽  
Erandathi Rajakaruna ◽  
Noureddine Abidi

Borax-cross-linked guar gum-manganese dioxide (GGB-MnO2) composite was synthesized using an environmentally friendly synthesis route and investigated for its efficiency of decolorizing methylene blue (MB) dye solution by an ultraviolet-visible (UV-Vis) spectrophotometric study. The GGB-MnO2 composite was characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA). The composite (1.2 g/L) exhibited excellent oxidative decolorization of MB (30 mg/L, 50 mL) solution to over 99% in 6, 13, and 40 min at pH 4, 7, and 10, respectively. The complete decolorization of MB occurred via a catalytic adsorption-oxidation-desorption mechanism. The GGB-MnO2 composite showed very good reusability and was stable after ten successive cycles with negligible losses of the decolorization efficiency.


2011 ◽  
Vol 287-290 ◽  
pp. 1735-1743 ◽  
Author(s):  
Yi Dong Shi ◽  
Qiong Guo ◽  
Yuan Song Xie

The C, N, S tri-doped TiO2 with high visible-light photo-catalysis effect was successfully prepared by mixing thiourea with the self-prepared TiO2 powder through calcining for 2h at 450°C. The TiO2 powder was obtained by homogeneous precipitation method using the metatitanic acid instead of expensive chemical reagents contained Ti as raw material. The effect of doping materials and methods on the photo-degradation rate of methylene blue and dyes was studied. The characterizations of the doped TiO2 were analyzed using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-visible absorption spectra (UV-vis). The results showed that this sample was the anatase TiO2 and contained elements C, N, S. The sample exhibited a significant response to ultraviolet and visible light. In the photo-degradation experiment, the C, N, S, tridoped-TiO2 could decolorize methylene blue and textile dyes quickly, and the photo-degradation rate of methylene blue could reach upward 98% after 3 hours under the different light sources.


Sign in / Sign up

Export Citation Format

Share Document