scholarly journals Removal of Methylene Blue from Aqueous Solution Using Agricultural Residue Walnut Shell: Equilibrium, Kinetic, and Thermodynamic Studies

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Ranxiao Tang ◽  
Chong Dai ◽  
Chao Li ◽  
Weihua Liu ◽  
Shutao Gao ◽  
...  

Walnut shell (WS), as an economic and environmental-friendly adsorbent, was utilized to remove methylene blue (MB) from aqueous solutions. The effects of WS particle size, solution pH, adsorbent dosage and contact time, and concentration of NaCl on MB removal were systematically investigated. Under the optimized conditions (i.e., contact time ~ 2 h, pH ~ 6, particle size ~ 80 mesh, dye concentration 20 mg/L, and 1.25 g/L adsorbent), the removal percentages can achieve ~97.1%, indicating WS was a promising absorbent to remove MB. Other supplementary experiments, such as Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and Brunauer-Emmett-Teller (BET) method, were also employed to understand the adsorption mechanisms. FTIR confirmed that the successful adsorption of MB on WS particles was through functional groups of WS. Using DLS method, the interactions between WS particles and dyes under various pH were investigated, which can be ascribed to the electrostatic forces. Kinetic data can be well fitted by the pseudo-second-order model, indicating a chemical adsorption. The adsorption isotherms were well described by both Langmuir and Freundlich models. Dubinin-Radushkevich model also showed that the adsorption process was a chemical adsorption. Thermodynamic data indicated that the adsorption was spontaneous, exothermic, and favorable at room temperature.

2015 ◽  
Vol 14 (04) ◽  
pp. 1550009 ◽  
Author(s):  
N. M. Mubarak ◽  
Y. T. Fo ◽  
Hikmat Said Al-Salim ◽  
J. N. Sahu ◽  
E. C. Abdullah ◽  
...  

The study on the removal of methylene blue (MB) and orange-G dyes using magnetic biochar derived from the empty fruit bunch (EFB) was carried out. Process parameters such as pH, adsorbent dosage, agitation speed and contact time were optimized using Design-Expert Software v.6.0.8. The statistical analysis reveals that the optimum conditions for the maximum adsorption of MB are at pH 2 and pH 10, dosage 1.0 g, and agitation speed and contact time of 125 rpm and 120 min respectively. While for orange-G, at pH 2, dosage 1.0 g, and agitation speed and contact time of 125 rpm and 120 min respectively. The maximum adsorption capacity of 31.25 mg/g and 32.36 mg/g for MB and orange-G respectively. The adsorption kinetic for both dyes obeyed pseudo-second order.


2018 ◽  
Vol 83 (1) ◽  
pp. 107-120 ◽  
Author(s):  
Zdravka Velkova ◽  
Gergana Kirova ◽  
Margarita Stoytcheva ◽  
Velizar Gochev

Pretreated waste Streptomyces fradiae biomass was utilized as an eco-friendly sorbent for Congo Red (CR) and Methylene Blue (MB) removal from aqueous solutions. The biosorbent was characterized by Fourier transform infrared spectroscopy. Batch experiments were conducted to study the effect of pH, biosorbent dosage, initial concentration of adsorbates, contact time and temperature on the biosorption of the two dyes. The equilibrium adsorption data were analysed using Freundlich and Langmuir models. Both models fitted well the experimental data. The maximum biosorption capacity of the pretreated Streptomyces fradiae biomass was 46.64 mg g-1 for CR and 59.63 mg g-1 for MB, at a pH 6.0, with the contact time of 120 min, the biosorbent dosage of 2 g dm-3 and the temperature of 298 K. Lagergren and Ho kinetic models were used to analyse the kinetic data obtained from different batch experiments. The biosorption of both dyes followed better the pseudo-second order kinetic model. The calculated values for ?G, ?S, and ?H indicated that the biosorption of CR and MB onto the waste pretreated biomass was feasible, spontaneous, and exothermic in the selected temperature range and conditions.


2021 ◽  
Vol 406 ◽  
pp. 348-363
Author(s):  
Larbi Haddad ◽  
Abdelkader Hima ◽  
Belkhir Dadamoussa ◽  
Asma Messai Aoun

In this study, a local mineral clay was used as an adsorbent for the elimination of a cationic dye: methylene blue (MB), in an aqueous solution by adsorption technique. Early on, we performed mineralogical and textural analyses of a clay sample using various techniques, namely X-ray diffraction, Brunauer-Emmett-Teller analysis and Fourier-transform infrared spectroscopy. The experimental results showed that this adsorbent is a mesoporous and non-swelling clay with illite and kaolinite as the major components with a specific area of about 110m2/g. The study of MB adsorption on the clay was carried out by optimizing the conditions of adsorption, notably the initial concentration of pollutant C0, the mass of clay m, the contact time t, the potential of hydrogen of the solution pH and the temperature T. Experimental results have shown that the equilibrium data are well adjusted by a Langmuir isotherm equation. Thermodynamic parameters such as the changes in Gibbs free energy, enthalpy, and entropy were determined from batch experiments. Results revealed that the adsorption of MB onto illitic clay was endothermic and spontaneous process. Kinetic modeling was also carried out. Experimental data adjusted the kinetic model of pseudo-second order with two stages of intraparticle diffusion.


2020 ◽  
Vol 15 (2) ◽  
pp. 460-471
Author(s):  
T. Unugul ◽  
F. U. Nigiz

Abstract In this study; acid treated carbonized mandarin peel (CMP) adsorbent was prepared and the adsorption behaviour of the adsorbent for copper removal was investigated. In the adsorption studies the effects of initial metal concentration, solution pH, adsorbent dosage and contact time on the removal were investigated. As a result; the highest removal of 100% was achieved when the copper concentration in water was 5 mg/L and the adsorbent dosage was 3.75 g/L at a solution pH of 7. Isotherm studies were also done and the appropriate isotherm was obtained as the Freundlich isotherm. According to the kinetic studies, the copper adsorption onto CMP adsorbent was adopted to the pseudo-second-order adsorption kinetic. After HCl regeneration, the adsorbent maintained 94% of its activity.


Author(s):  
Francis Oluwadayo Asokogene ◽  
Muhammad Abbas Ahmad Zaini ◽  
Muhammad Misau Idris ◽  
Surajudeen Abdulsalam ◽  
El-Nafaty Aliyu Usman

Abstract The work was aimed at evaluating the adsorptive properties of neem leave/chitosan aggregates for methylene blue removal. The adsorbent was screened to form coarse (CCANL, 600 µm), medium (MCANL, 300 µm) and fine (FCANL, 150 µm) neem leave/chitosan particles. The samples were characterized for pH, water binding capacity (WBC), surface chemistry by Fourier transform infrared spectroscopy, surface morphology by scanning electron microscope and textural properties by Brunauer-Emmett-Teller method. CCANL, MCANL and FCANL possessed specific surface area of 255, 258 and 242 m2/g, respectively. The effects of initial concentration, adsorbent dosage, contact time, pH and temperature were studied. CCANL, MCANL and FCANL demonstrated adsorption capacity of 102, 92.5 and 105 mg/g, respectively, in which ionic interaction and mesopore filling were the possible adsorption mechanisms. The equilibrium data were well fitted by Redlich-Peterson model, suggesting a monolayer adsorption onto a heterogeneous surface of adsorbent. The kinetics data were best described by pseudo-second-order and intraparticle diffusion models, for which the film diffusion, intraparticle diffusion and surface adsorption could co-exist as the controlling steps in adsorption. Adsorption of methylene blue onto chitosan composites was spontaneous, endothermic and demonstrated increased randomness at solid-solution interface.


2019 ◽  
Vol 4 (12) ◽  
pp. 78-85
Author(s):  
Aboiyaa A. Ekine ◽  
Patience N. Ikenyiri ◽  
O. Hezekiah-Braye

This Research investigated the adsorption capacity of locally prepared adsorbents from Egg shells for the removal of fluoride ion in well water. It evaluated the performance of these adsorbents calcinated at 3000C and modified with 1.0M HNO3 (trioxonitrate (v)) acid. Batch adsorber was used to allow for interaction between adsorbent (grounded Egg shells) with water containing fluoride ion. The batch experiment was performed with particle size of 2.12 contact time (60, 120, 180, 240, 300min), mass dosage (5g, 10g, 15g, 20g) and temperature (250C, 300C, 400C, 500C). The modified adsorbent was characterized to determine the physiochemical properties of grounded Egg shells (GE). Also the chemical composition of the modified adsorbent was analyzed to determine the percentage of calcium element required for the uptake of the fluoride ions in water for calcium as 39.68% for grounded Egg shells (GE). Percentage adsorption increased with increase in contact time, mass dosage and temperature for the adsorbent. The adsorption capacity was also determined which also increased with increase in contact time, temperature but decreased with increase in mass dosage at constant time of 60minutes. The pseudo first-order, pseudo second order and intraparticle diffusion kinetic models were fitted into the experimental results. The results obtained indicated that the pseudo first order and intraparticle diffusion models for the grounded Egg shells (GE) reasonably described the adsorption process very well whereas the pseudo second order model was not suitable for a calcinations temperature of 3000C and particle size of 2.12m. The adsorption isotherms were obtained from equilibrium experiment Performed at temperature of 25, 35, 45 and 550C. The result showed that Langmuir and Freundlich isotherm fitted perfectly the experimental data. However, the negative values of Gibb’s free energy indicated that adsorption was favourable and the positive enthalpy change H0 revealed that adsorption process was endothermic while the positive value of the entropy change signified increased randomness with adsorption.


2021 ◽  
Vol 17 (6) ◽  
pp. 768-775
Author(s):  
Fadina Amran ◽  
Nur Fatiah Zainuddin ◽  
Muhammad Abbas Ahmad Zaini

The present work was aimed at evaluating the performance of two-stage adsorber for methylene blue removal by coconut shell activated carbon in minimizing the adsorbent mass and contact time. The Langmuir constants were used to evaluate the optimum mass, while the pseudo-second-order constants for contact time. Results show that the adsorbent mass can only be minimized by 0.01 % due to the high adsorbent affinity towards methylene blue, while the contact time has been optimized to 12.2 min at the studied conditions. The effect of adsorbent affinity in two-stage adsorber was analyzed to shed some light about its importance in the design of two-stage adsorber. The performance evaluation was also discussed to bring insight into wastewater treatment applications.


2020 ◽  
Author(s):  
Eman Alabbad

Abstract Background Water contamination has increasingly become a significant problem affecting the welfare of living organisms perceived to be aquatic beneficiaries. The nature and origin of the contaminant always determines the purification techniques. The most common contaminants in wastewater include organic compounds such as dyes that must be eliminated to enhance water purity and safety.Result The results indicate that the removal of DY50 by the modified chitosan was affected by the solution pH, sorbent dosage, initial DY50 concentration, contact time, and temperature. The experimental data were fitted to the Langmuir, Freundlich, and Temkin isotherms, and Langmuir isotherm showed the best fit. The kinetic data were fitted to the pseudo-first-order and pseudo-second-order rate equations. The removal rate was 97.9% by chemisorption components after the three hours at about 0.05 g of sorbent dose and 100 ppm of the Direct Yellow 50 dye initial concentration. The adsorption behavior of the modified chitosan for the removal of DY50 was well-described using the pseudo-second-order kinetic model, Intraparticle diffusion analysis was also conducted. The thermodynamic properties such as free energy (∆G), enthalpy (∆H), and entropy (∆S), in addition to the intra-particle diffusion rate were similarly defined.Conclusion The pH, initial DY50 concentration, sorbent dosage, adsorption temperature, and contact time had a significant effect on the adsorption of DY50 by chitosan-iso-vanillin.


2018 ◽  
Vol 18 (44) ◽  
pp. 5-11 ◽  
Author(s):  
Nizamettin Demirkıran ◽  
G D Turhan Özdemir ◽  
M Saraç ◽  
M Dardağan

In this study, the adsorption of methylene blue dye was examined by using pyrolusite ore as a low-cost alternative adsorbent source. Pyrolusite, which contains mainly MnO2, is a manganese ore. The effects of the initial concentration of dye, contact time, initial pH of solution, adsorbent dosage, stirring speed of solution, and average particle size of adsorbent on the adsorption of methylene blue were studied. It was found that the percentage of the adsorbed dye increased with increasing the amount of pyrolusite. While the initial dye concentration, initial pH, contact time, stirring speed, particle size, and adsorbent dosage were 25 ppm, 6, 90 min, 250 rpm, 63 µm, and 12 g/l, respectively, the efficiency of dye adsorption on pyrolusite ore was 99%. The isotherm and kinetic studies relating to this adsorption process were also made. It was found that the equilibrium data followed the Langmuir isotherm model while the kinetic of process could be described by the pseudo-second order kinetic model.


Author(s):  
Farhad Salimi ◽  
Keivan Tahmasobi ◽  
Changiz Karami ◽  
Alireza Jahangiri

Modified nano-silica with Bismuth and Iron adsorbent was synthesized to be used as an effective adsorbent material for methylene blue (MB) removal from water solution. The prepared samples were characterized using SEM, FTIR, XRD and TEM. The effect of experimental parameters such as pH, contact time and initial concentration on adsorption treatment were studied. Results indicated that the optimum conditions for maximum <strong>adsorption</strong> of 20 mg/L MB <strong>were:</strong> contact time of 20 minutes, pH= 5-6 and 8 gr/L adsorbent, the remaining MB in solution was 1.75%. Langmuir and Freundlich isotherms were employed to model the experimental results and the Freundlich isotherm was the best-fitting models for the experiment results. The kinetic data were also analyzed through pseudo-first-order and pseudo-second-order models. The pseudo-second-order kinetic model well depicted the kinetics of dyes adsorption on adsorbent.


Sign in / Sign up

Export Citation Format

Share Document