The relationship between redox potentials and substituent constants in biologically active arylazoxy compounds

2005 ◽  
Vol 579 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Francine Santos de Paula ◽  
Écio Matias Sales ◽  
Maura Vallaro ◽  
Roberta Fruttero ◽  
Marília O.F. Goulart
2003 ◽  
Vol 544 ◽  
pp. 25-34 ◽  
Author(s):  
Francine Santos de Paula ◽  
Alessandra G Cioletti ◽  
Jorge F da Silva Filho ◽  
Antônio Euzébio G Santana ◽  
Aldenir F dos Santos ◽  
...  

2021 ◽  
Author(s):  
Yuriy Lykholat

The book contains the study results of the environmental and soil conditions of the transformed territories, the ecological patterns of woody plants natural communities’ formation as well as the features of the herbaceous communities’ succession in flooded areas. The current state of forest areas is highlighted, the problems of forest management and their exploitation in Ukraine are outlined. Aspects of anthropogenic impact on natural aquatic ecosystems are shown and various biotesting methods of negative effects are characterized. The relationship between the presence of exogenous biologically active chemical compounds in the environment and damage to the endocrine system of animals has been revealed. The scientific manuscript is intended for ecologists, specialists interested in environmental management and environmental protection. The book may be useful for graduate students and scientific researchers.


2021 ◽  
pp. 22-35
Author(s):  
Stanislav V. Pechinskii ◽  
Eduard T. Oganesyan ◽  
Anna G. Kuregyan

Molecular docking is a convenient and cost-effective tool for targeted screening of biologically active structures. This method makes it possible to reveal the relationship between structure and activity, as well as to search for new active compounds. Due to the fact that the antiviral activity of flavonoids and their derivatives has been shown experimentally and clinically, the study of their antiviral activity against SARS-CoV-2 is a promising study. In an in silico experiment, the possibility of binding 20 flavonoid ligands and the main protease SARS-CoV-2 was studied. The structural features of flavone and flavanone derivatives have been determined, which determine their ability to block the main protease of the SARS-CoV-2 virus. Structures of eight new candidates that bind the main protease SARS-CoV-2, which have the prospect of synthesis and further pharmacological research, have been proposed.


2012 ◽  
Vol 39 (11) ◽  
pp. 21-27 ◽  
Author(s):  
L.I. Shal'nova ◽  
N.A. Lavrov ◽  
A.F. Nikolaev

The physicochemical properties and the formation, stability, and dissociation constants of complexes of poly acids with organic bases possessing physiological activity were determined by methods of potentiometric titration, conductometry, and equilibrium dialysis, and by biological methods. The relationship between the level of physicochemical characteristics of complexes and the possibility of predicting the prolonged pharmacological (antimicrobial, anaesthetising) action of physiologically active substances in complexes with polymers was established.


2020 ◽  
Vol 76 (8) ◽  
pp. 723-733
Author(s):  
Magdalena Małecka ◽  
Joachim Kusz ◽  
Lars Eriksson ◽  
Angelika Adamus-Grabicka ◽  
Elżbieta Budzisz

The present study examines a series of six biologically-active flavonoid and chromanone derivatives by X-ray crystal structure analysis: (E)-3-benzylidene-2-phenylchroman-4-one, C22H16O2, I, (E)-3-(4-methylbenzylidene)-2-phenylchroman-4-one, C23H18O2, II, (E)-3-(3-methylbenzylidene)-2-phenylchroman-4-one, C23H18O2, III, (E)-3-(4-methoxybenzylidene)-2-phenylchroman-4-one, C23H18O3, IV, (E)-3-benzylidenechroman-4-one, C16H12O2, V, and (E)-3-(4-methoxybenzylidene)chroman-4-one, C17H14O3, VI. The cytotoxic activities of the presented crystal structures have been determined, together with their intermolecular interaction preferences and Hirshfeld surface characteristics. An inverse relationship was found between the contribution of C...C close contacts to the Hirshfeld surface and cytotoxic activity against the WM-115 cancer line. Dependence was also observed between the logP value and the percentage contribution of C...H contacts to the Hirshfeld surface.


2004 ◽  
Vol 689 (15) ◽  
pp. 2473-2479 ◽  
Author(s):  
Lubov’ V. Snegur ◽  
Alexander A. Simenel ◽  
Yury S. Nekrasov ◽  
Elena A. Morozova ◽  
Zoya A. Starikova ◽  
...  

Author(s):  
Francis Beauvais

The “memory of water” experiments suggested the existence of molecular-like effects without molecules. Although no convincing evidence of modifications of water – specific of biologically-active molecules – has been reported up to now, consistent changes of biological systems were nevertheless recorded. We propose an alternate explanation based on classical conditioning of the experimenter. Using a probabilistic model, we describe not only the biological system, but also the experimenter engaged in an elementary dose-response experiment. We assume that during conventional experiments involving genuine biologically-active molecules, the experimenter is involuntarily conditioned to expect a pattern, namely a relationship between descriptions (or “labels”) of experimental conditions and corresponding biological system states. The model predicts that the conditioned experimenter could continue to record the learned pattern even in the absence of the initial cause, namely the biologically-active molecules. The phenomenon is self-sustained because the observation of the expected pattern reinforces the initial conditioning. A necessary requirement is the use of a system submitted to random fluctuations with autocorrelated successive states (no forced return to the initial position). The relationship recorded by the conditioned experimenter is, however, not causal in this model because blind experiments with an “outside” supervisor lead to a loss of correlations (i.e., system states randomly associated to “labels”). In conclusion, this psychophysical model allows explaining the results of “memory of water” experiments without referring to water or another local cause. It could be extended to other scientific fields in biology, medicine and psychology when suspecting an experimenter effect.


2021 ◽  
Vol 10 (4) ◽  
pp. 95-103
Author(s):  
J. Strugar ◽  
A. A. Orlova ◽  
M. N. Povydysh

Introduction. Understanding the mechanisms of accumulation of individual groups of biologically active substances in promising types of plant raw materials and the possibility of predicting them is important for solving fundamental and applied problems of pharmaceuticals. To date, differences have been revealed in the qualitative and quantitative composition of secondary metabolites in the aboveground and underground of Comarum palustre L., however, the issue remains unstudied.Aim. Comparative metabolomic study of the composition of the primary metabolites of the aboveground and underground parts of Comarum palustre L.Materials and methods. The object of the study was the aboveground and underground parts of Comarum palustre L., harvested in the vicinity of the nursery of medicinal plants of the St. Petersburg State Chemical and Pharmaceutical University (Leningrad Region, Vsevolozhsky District, Priozerskoe Highway, 38 km) in 2019 and dried. Metabolomic studies based on GC-MS method was perfomed. A statistical analysis based on the MetaboAnalyst 5.0 platform was used.Results and discussion. Analysis of the chromatograms obtained using the GC-MS method revealed the content of 933 primary metabolites in the aboveground and underground parts of Comarum palustre L., 120 of which were identified. Using a number of statistical methods, 10 metabolites from monosaccharides, acids and alcohols, making the greatest contribution to the manifestation of differences between the studied samples, were identified.Conclusion. The study revealed the relationship between the composition of primary and secondary metabolites in medicinal plant raw materials.


Sign in / Sign up

Export Citation Format

Share Document