C-axis oriented polycrystalline BaNi2GdxFe16-xO27 (x = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5) for the application of self-biased circulator at K band

Author(s):  
Qian Liu ◽  
Tong Ben ◽  
Long Chen ◽  
Libing Jing
Author(s):  
Subuh Pramono ◽  
Muhammad Hamka Ibrahim ◽  
Josaphat Tetuko Sri Sumantyo
Keyword(s):  

1982 ◽  
Author(s):  
S. OKASAKA ◽  
M. NAKAMURA ◽  
T. TANAKA ◽  
T. TAKEUCHI ◽  
H. KOMAGATA

1992 ◽  
Author(s):  
T. RUSH ◽  
S. DAUGHTRIDGE ◽  
J.-L. FROELIGER ◽  
R. PETERS ◽  
J. SNYDER ◽  
...  
Keyword(s):  

1999 ◽  
Vol 47 (8) ◽  
pp. 1477-1481 ◽  
Author(s):  
A.R. Brown ◽  
G.M. Rebeiz
Keyword(s):  

Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 38
Author(s):  
Francisco Rey-García ◽  
Rafael Ibáñez ◽  
Luis Alberto Angurel ◽  
Florinda M. Costa ◽  
Germán F. de la Fuente

The Laser Floating Zone (LFZ) technique, also known as Laser-Heated Pedestal Growth (LHPG), has been developed throughout the last several decades as a simple, fast, and crucible-free method for growing high-crystalline-quality materials, particularly when compared to the more conventional Verneuil, Bridgman–Stockbarger, and Czochralski methods. Multiple worldwide efforts have, over the years, enabled the growth of highly oriented polycrystalline and single-crystal high-melting materials. This work attempted to critically review the most representative advancements in LFZ apparatus and experimental parameters that enable the growth of high-quality polycrystalline materials and single crystals, along with the most commonly produced materials and their relevant physical properties. Emphasis will be given to materials for photonics and optics, as well as for electrical applications, particularly superconducting and thermoelectric materials, and to the growth of metastable phases. Concomitantly, an analysis was carried out on how LFZ may contribute to further understanding equilibrium vs. non-equilibrium phase selectivity, as well as its potential to achieve or contribute to future developments in the growth of crystals for emerging applications.


2021 ◽  
Vol 503 (1) ◽  
pp. 270-291
Author(s):  
F Navarete ◽  
A Damineli ◽  
J E Steiner ◽  
R D Blum

ABSTRACT W33A is a well-known example of a high-mass young stellar object showing evidence of a circumstellar disc. We revisited the K-band NIFS/Gemini North observations of the W33A protostar using principal components analysis tomography and additional post-processing routines. Our results indicate the presence of a compact rotating disc based on the kinematics of the CO absorption features. The position–velocity diagram shows that the disc exhibits a rotation curve with velocities that rapidly decrease for radii larger than 0.1 arcsec (∼250 au) from the central source, suggesting a structure about four times more compact than previously reported. We derived a dynamical mass of 10.0$^{+4.1}_{-2.2}$ $\rm {M}_\odot$ for the ‘disc + protostar’ system, about ∼33 per cent smaller than previously reported, but still compatible with high-mass protostar status. A relatively compact H2 wind was identified at the base of the large-scale outflow of W33A, with a mean visual extinction of ∼63 mag. By taking advantage of supplementary near-infrared maps, we identified at least two other point-like objects driving extended structures in the vicinity of W33A, suggesting that multiple active protostars are located within the cloud. The closest object (Source B) was also identified in the NIFS field of view as a faint point-like object at a projected distance of ∼7000 au from W33A, powering extended K-band continuum emission detected in the same field. Another source (Source C) is driving a bipolar $\rm {H}_2$ jet aligned perpendicular to the rotation axis of W33A.


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 889
Author(s):  
Xiaoying Deng ◽  
Peiqi Tan

An ultra-low-power K-band LC-VCO (voltage-controlled oscillator) with a wide tuning range is proposed in this paper. Based on the current-reuse topology, a dynamic back-gate-biasing technique is utilized to reduce power consumption and increase tuning range. With this technique, small dimension cross-coupled pairs are allowed, reducing parasitic capacitors and power consumption. Implemented in SMIC 55 nm 1P7M CMOS process, the proposed VCO achieves a frequency tuning range of 19.1% from 22.2 GHz to 26.9 GHz, consuming only 1.9 mW–2.1 mW from 1.2 V supply and occupying a core area of 0.043 mm2. The phase noise ranges from −107.1 dBC/HZ to −101.9 dBc/Hz at 1 MHz offset over the whole tuning range, while the total harmonic distortion (THD) and output power achieve −40.6 dB and −2.9 dBm, respectively.


Sign in / Sign up

Export Citation Format

Share Document