scholarly journals Myricetin and myricetrin alleviate liver and colon damage in a chronic colitis mice model: Effects on tight junction and intestinal microbiota

2021 ◽  
Vol 87 ◽  
pp. 104790
Author(s):  
Enyin Li ◽  
Ting Wang ◽  
Rui Zhou ◽  
Ziwei Zhou ◽  
Chongyang Zhang ◽  
...  
2020 ◽  
Vol 11 ◽  
Author(s):  
Zhenxia Xu ◽  
Hu Tang ◽  
Fenghong Huang ◽  
Zhixian Qiao ◽  
Xu Wang ◽  
...  

Algal oil is rich in docosahexaenoic acid (DHA) and has various health benefits against human metabolic disorders and disease. This study aimed to investigate the effects of DHA algal oil on colonic inflammation and intestinal microbiota in dextran sulfate sodium (DSS)-induced colitis mice model. Male C57BL/6 mice was induced colitis by 2.5% DSS and followed by 2 weeks of treatment with algal oil (250 or 500 mg/kg/day). The colonic inflammation was assessed by colon macroscopic damage scores, and the degree of neutrophil infiltration was evaluated by measuring tissue-associated myeloperoxidase (MPO) activity in colonic mucosa. Tight junction proteins in the colonic tissue were measured by real-time PCR and western blot. Moreover, the intestinal microbiota and shot chain fatty acids (SCFAs) were estimated by bioinformatic analysis and GC, respectively. Colonic damage due to DSS treatment was significantly ameliorated by algal oil supplementation. In addition, algal oil significantly inhibited the increases of malondialdehyde (MDA) content, MPO activity, pro-inflammatory cytokines level and tight junction proteins expression in DSS-treated mice. Furthermore, supplementation of algal oil modulated the intestinal microbiota structure in DSS induced colitis mice by increasing the proportion of the unidentified_S24_7 and decreasing the relative abundance of unidentified_Ruminococcaceae, Clostridium and Roseburia. On the analysis of SCFAs, the caecal content of acetic acid, propionic acid, isobutyric acid, buturic, and the total SCFAs showed a significant increase in algal oil-administered mice. Together, these results suggested that algal oil rich in DHA inhibited the progress of DSS-induced colitis in mice by modulating the intestinal microbiota and metabolites and repairing the intestinal barrier, which may be applied in the development of therapeutics for intestinal inflammation.


2021 ◽  
Vol 17 (11) ◽  
pp. 2210-2218
Author(s):  
Feng Li ◽  
Guangjian Zhang ◽  
Jing Liang ◽  
Yu Ma ◽  
Jian Huang ◽  
...  

Intestinal barrier injuries are common in uremia, which aggravates uremia. The goal of this study is to learn moreabout how electroacupuncture regulates gastrointestinal function, as well as to identify the importance of microglia in electroacupuncture regulation and the cannabinoid receptor signaling pathway in controlling the activity of intestinal glial cells. The mice were arbitrarily assigned to four groups: control, CKD, electroacupuncture stimulation, or AM251 (CB1 receptor antagonist). The mice model of uremia was established by adenine gavage. Western blotting revealed the development of tight junction proteins ZO-1, cannabinoid 1 receptor, glial specific GFAP, occludin, S100 β, claudin-1, and JNK. GFAP and CB1R protein expression and co-localization of the intestinal glial cells were observed by double-labeled fluorescence. The expression of cannabinoid 1 receptor CB1R in the intestinal glial cells was increased after electroacupuncture. The expression of tight junction protein, GFAP, S100 β, and CB1R protein was up-regulated after electroacupuncture, and the dysfunction of the intestinal barrier in uremia was corrected. Nevertheless, AM251, a CB1R antagonist, reversed the effect of electroacupuncture. Electroacupuncture can protect the intestinal barrier through the intestinal glial cell CB1R, and the effect is achieved by inhibiting the JNK pathway.


2008 ◽  
Vol 54 (9) ◽  
pp. 1892-1900 ◽  
Author(s):  
Takayuki Kajiura ◽  
Tomoko Takeda ◽  
Shinji Sakata ◽  
Mitsuo Sakamoto ◽  
Masaki Hashimoto ◽  
...  

2020 ◽  
Vol 33 (11) ◽  
pp. 1797-1808
Author(s):  
Chi Huan Chang ◽  
Po Yun Teng ◽  
Tzu Tai Lee ◽  
Bi Yu

Objective: This study assessed the effects of probiotics on cecal microbiota, gene expression of intestinal tight junction proteins, and immune response in the cecal tonsil of broiler chickens challenged with Salmonella enterica subsp. enterica.Methods: One-day-old broiler chickens (n = 240) were randomly allocated to four treatments: negative control (Cont), multi-strain probiotic-treated group (Pro), Salmonella-infected group (Sal), and multi-strain probiotic-treated and Salmonella-infected group (ProSal). All chickens except those in the Cont and Pro groups were gavaged with 1×10<sup>8</sup> cfu/mL of S. enterica subsp. enterica 4 days after hatching.Results: Our results indicated that body weight, weight gain, and feed conversion ratio of birds were significantly reduced (p<0.05) by Salmonella challenge. Chickens challenged with Salmonella decreased cecal microbial diversity. Chickens in the Sal group exhibited abundant Proteobacteria than those in the Cont, Pro, and ProSal groups. Salmonella infection downregulated gene expression of Occludin, zonula occludens-1 (ZO1), and Mucin 2 in the jejunum and Occludin and Claudin in the ileum. Moreover, the Sal group increased gene expression of interferon-γ (IFN-γ), interleukin-6 (IL-6), IL-1β, and lipopolysaccharide-induced tumor necrosis factor-alpha factor (LITAF) and reduced levels of transforming growth factor-β4 and IL-10 compared with the other groups (p<0.05). However, chickens receiving probiotic diets increased Lactobacillaceae abundance and reduced Enterobacteriaceae abundance in the ceca. Moreover, supplementation with probiotics increased the mRNA expression of Occludin, ZO1, and Mucin 2 in the ileum (p<0.05). In addition, probiotic supplementation downregulated the mRNA levels of IFN-γ (p<0.05) and LITAF (p = 0.075) and upregulated IL-10 (p = 0.084) expression in the cecal tonsil.Conclusion: The administration of multi-strain probiotics modulated intestinal microbiota, gene expression of tight junction proteins, and immunomodulatory activity in broiler chickens.


Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 445 ◽  
Author(s):  
Mariya A. Borisova ◽  
Olga A. Snytnikova ◽  
Ekaterina A. Litvinova ◽  
Kseniya M. Achasova ◽  
Tatiana I. Babochkina ◽  
...  

Growing evidence suggests that intestinal mucosa homeostasis impacts immunity, metabolism, the Central Nervous System (CNS), and behavior. Here, we investigated the effect of the monosaccharide fucose on inflammation, metabolism, intestinal microbiota, and social behavior in the Dextran Sulfate Sodium (DSS)-induced chronic colitis mouse model. Our data show that chronic colitis is accompanied by the decrease of the serum tryptophan level and the depletion of the intestinal microbiota, specifically tryptophan-producing E. coli and Bifidobacterium. These changes are associated with defects in the male mouse social behavior such as a lack of preference towards female bedding in an odor preference test. The addition of fucose to the test animals’ diet altered the bacterial community, increased the abundance of tryptophan-producing E. coli, normalized blood tryptophan levels, and ameliorated social behavior deficits. At the same time, we observed no ameliorating effect of fucose on colon morphology and colitis. Our results suggest a possible mechanism by which intestinal inflammation affects social behavior in male mice. We propose fucose as a promising prebiotic, since it creates a favorable environment for the beneficial bacteria that promote normalization of serum tryptophan level and amelioration of the behavioral abnormalities in the odor preference test.


2013 ◽  
Vol 190 (12) ◽  
pp. 6616-6625 ◽  
Author(s):  
Yasuhiro Nemoto ◽  
Takanori Kanai ◽  
Masahiro Takahara ◽  
Shigeru Oshima ◽  
Ryuichi Okamoto ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (70) ◽  
pp. 65995-66006 ◽  
Author(s):  
Xinyun Qiu ◽  
Xia Li ◽  
Zhe Wu ◽  
Feng Zhang ◽  
Ning Wang ◽  
...  

The commensal intestinal microbiota plays critical roles in the initiation and development of inflammatory bowel diseases (IBD).


Sign in / Sign up

Export Citation Format

Share Document