Wave impact pressure and kinematics due to breaking wave impingement on a monopile

2019 ◽  
Vol 86 ◽  
pp. 94-123 ◽  
Author(s):  
Mayilvahanan Alagan Chella ◽  
Hans Bihs ◽  
Dag Myrhaug
2010 ◽  
Vol 1 (3-4) ◽  
pp. 155-166 ◽  
Author(s):  
C. Rajasekaran ◽  
S.A. Sannasiraj ◽  
V. Sundar

2009 ◽  
Author(s):  
Anne M. Fullerton ◽  
Ann Marie Powers ◽  
Don C. Walker ◽  
Susan Brewton

2021 ◽  
Vol 9 (1) ◽  
pp. 55
Author(s):  
Darshana T. Dassanayake ◽  
Alessandro Antonini ◽  
Athanasios Pappas ◽  
Alison Raby ◽  
James Mark William Brownjohn ◽  
...  

The survivability analysis of offshore rock lighthouses requires several assumptions of the pressure distribution due to the breaking wave loading (Raby et al. (2019), Antonini et al. (2019). Due to the peculiar bathymetries and topographies of rock pinnacles, there is no dedicated formula to properly quantify the loads induced by the breaking waves on offshore rock lighthouses. Wienke’s formula (Wienke and Oumeraci (2005) was used in this study to estimate the loads, even though it was not derived for breaking waves on offshore rock lighthouses, but rather for the breaking wave loading on offshore monopiles. However, a thorough sensitivity analysis of the effects of the assumed pressure distribution has never been performed. In this paper, by means of the Wolf Rock lighthouse distinct element model, we quantified the influence of the pressure distributions on the dynamic response of the lighthouse structure. Different pressure distributions were tested, while keeping the initial wave impact area and pressure integrated force unchanged, in order to quantify the effect of different pressure distribution patterns. The pressure distributions considered in this paper showed subtle differences in the overall dynamic structure responses; however, pressure distribution #3, based on published experimental data such as Tanimoto et al. (1986) and Zhou et al. (1991) gave the largest displacements. This scenario has a triangular pressure distribution with a peak at the centroid of the impact area, which then linearly decreases to zero at the top and bottom boundaries of the impact area. The azimuthal horizontal distribution was adopted from Wienke and Oumeraci’s work (2005). The main findings of this study will be of interest not only for the assessment of rock lighthouses but also for all the cylindrical structures built on rock pinnacles or rocky coastlines (with steep foreshore slopes) and exposed to harsh breaking wave loading.


2009 ◽  
Vol 31 (2) ◽  
pp. 111-131 ◽  
Author(s):  
Abbas Khayyer ◽  
Hitoshi Gotoh ◽  
Songdong Shao

1981 ◽  
Author(s):  
Olin J. Stephens ◽  
Karl L. Kirkman ◽  
Robert S. Peterson

The 1979 Fastnet focused attention upon yacht capsizes and resulting damage and loss of life. A classical stability analysis does not clearly reveal some of the characteristics of the modern racing yacht which may exacerbate a capsizing tendency. A review of the mechanism of a single-wave-impact capsize reveals inadequacies in static methods of stability analysis and hints at a connection between recent design trends and an increased frequency of capsize. The paper traces recent design trends, relates these to capsizing by a description of the dynamic mechanism of breaking wave impact, and outlines the unusual oceanography of the 1979 Fastnet which led to a heightened incidence of capsize.


Author(s):  
Kusalika Ariyarathne ◽  
Kuang-An Chang ◽  
Richard Mercier

Impact pressure due to plunging breaking waves impinging on a simplified model structure was investigated in the laboratory based on two breaking wave conditions: the wall impingement wave condition and the deck impingement wave condition. Pressure, void fraction, and velocities were measured at various locations on the deck surface. Impact pressure was correlated with the mean kinetic energy calculated based on the measured mean velocities and void fraction to obtain the impact coefficient. For the wall impingement wave condition, the relationship between impact pressure and mean kinetic energy is linear with the impact coefficient close to unity. For the deck impingement wave condition, the above relationship does not show good correlation, whereas the impact coefficient was found to be a function of the rate of pressure rise.


Sign in / Sign up

Export Citation Format

Share Document