A Numerical Wave-Structure-Soil Interaction Model for Monolithic Breakwaters Subject to Breaking Wave Impact

Author(s):  
Hisham El Safti
Author(s):  
Rameeza Moideen ◽  
Manasa Ranjan Behera ◽  
Arun Kamath ◽  
Hans Bihs

Abstract Extreme wave impact due to tsunamis and storm surge create large wave heights causing destruction to coastal and offshore structures. These extreme waves are represented by focused waves in the present study and the impact on offshore deck is studied. Numerical wave tank used is modelled using open-source software REE3D, where the level set method is used to capture the air-water interface. Vertical impact force on offshore deck is computed and compared with the experimental results to validate the numerical model. Focused wave is generated by phase focusing a group of waves at a particular position and time. The nonlinearity of focused wave and its effect on the vertical impact force is quantified for different airgap and increasing wave heights. The steepness of this focused wave is increased to initiate phase focused breaking in the numerical wave tank, which is validated with experimental results of Ghadirian et al., 2016. The main purpose of this paper is to examine breaking focused wave group loads on the offshore deck and to study the impact on deck at different breaking locations. The positioning of the deck with respect to breaker location have shown that the maximum horizontal impact force due to breaking wave occurs when the plunging crest hits the deck side.


2021 ◽  
Vol 9 (12) ◽  
pp. 1440
Author(s):  
Miguel Uh Zapata ◽  
Damien Pham Van Bang ◽  
Kim Dan Nguyen

The numerical modeling of sediment transport under wave impact is challenging because of the complex nature of the triple wave–structure–sediment interaction. This study presents three-dimensional numerical modeling of sediment scouring due to non-breaking wave impact on a vertical seawall. The Navier–Stokes–Exner equations are approximated to calculate the full evolution of flow fields and morphodynamic responses. The bed erosion model is based on the van Rijn formulation with a mass-conservative sand-slide algorithm. The numerical solution is obtained by using a projection method and a fully implicit second-order unstructured finite-volume method in a σ-coordinate computational domain. This coordinate system is employed to accurately represent the free-surface elevation and sediment/water interface evolution. Experimental results of the velocity field, surface wave motion, and scour hole formation hole are used to compare and demonstrate the proposed numerical method’s capabilities to model the seawall scour.


2009 ◽  
Author(s):  
Anne M. Fullerton ◽  
Ann Marie Powers ◽  
Don C. Walker ◽  
Susan Brewton

2021 ◽  
Vol 9 (1) ◽  
pp. 55
Author(s):  
Darshana T. Dassanayake ◽  
Alessandro Antonini ◽  
Athanasios Pappas ◽  
Alison Raby ◽  
James Mark William Brownjohn ◽  
...  

The survivability analysis of offshore rock lighthouses requires several assumptions of the pressure distribution due to the breaking wave loading (Raby et al. (2019), Antonini et al. (2019). Due to the peculiar bathymetries and topographies of rock pinnacles, there is no dedicated formula to properly quantify the loads induced by the breaking waves on offshore rock lighthouses. Wienke’s formula (Wienke and Oumeraci (2005) was used in this study to estimate the loads, even though it was not derived for breaking waves on offshore rock lighthouses, but rather for the breaking wave loading on offshore monopiles. However, a thorough sensitivity analysis of the effects of the assumed pressure distribution has never been performed. In this paper, by means of the Wolf Rock lighthouse distinct element model, we quantified the influence of the pressure distributions on the dynamic response of the lighthouse structure. Different pressure distributions were tested, while keeping the initial wave impact area and pressure integrated force unchanged, in order to quantify the effect of different pressure distribution patterns. The pressure distributions considered in this paper showed subtle differences in the overall dynamic structure responses; however, pressure distribution #3, based on published experimental data such as Tanimoto et al. (1986) and Zhou et al. (1991) gave the largest displacements. This scenario has a triangular pressure distribution with a peak at the centroid of the impact area, which then linearly decreases to zero at the top and bottom boundaries of the impact area. The azimuthal horizontal distribution was adopted from Wienke and Oumeraci’s work (2005). The main findings of this study will be of interest not only for the assessment of rock lighthouses but also for all the cylindrical structures built on rock pinnacles or rocky coastlines (with steep foreshore slopes) and exposed to harsh breaking wave loading.


1981 ◽  
Author(s):  
Olin J. Stephens ◽  
Karl L. Kirkman ◽  
Robert S. Peterson

The 1979 Fastnet focused attention upon yacht capsizes and resulting damage and loss of life. A classical stability analysis does not clearly reveal some of the characteristics of the modern racing yacht which may exacerbate a capsizing tendency. A review of the mechanism of a single-wave-impact capsize reveals inadequacies in static methods of stability analysis and hints at a connection between recent design trends and an increased frequency of capsize. The paper traces recent design trends, relates these to capsizing by a description of the dynamic mechanism of breaking wave impact, and outlines the unusual oceanography of the 1979 Fastnet which led to a heightened incidence of capsize.


2005 ◽  
Vol 26 (5) ◽  
pp. 579-586
Author(s):  
Wang Yuan-zhan ◽  
Zhou Zhi-rong ◽  
Yang Hai-dong

Author(s):  
Henry Bandringa ◽  
Joop A. Helder

To assess the integrity and safety of structures offshore, prediction of run-up, green water, and impact loads needs to be made during the structure’s design. For predicting these highly non-linear phenomena, most of the offshore industry relies on detailed model testing. In the last couple of years however, CFD simulations have shown more and more promising results in predicting these events, see for instance [1]–[4]. To obtain confidence in the accuracy of CFD simulations in the challenging field of extreme wave impacts, a proper validation of such CFD tools is essential. In this paper two CFD tools are considered for the simulation of a deterministic breaking wave impact on a fixed semi submersible, resulting in flow phenomena like wave run-up, horizontal wave impact and deck impacts. Hereby, one of the CFD tools applies an unstructured gridding approach and implicit free-surface reconstruction, and uses an implicit time integration with a fixed time step. The other CFD tool explicitly reconstructs the free surface on a structured grid and integrates the free surface explicitly in time, using a variable time step. The presented simulations use a compact computational domain with wave absorbing boundary conditions and local grid refinement to reduce CPU time. Besides a typical verification and validation of the results, for one of the CFD tools a sensitivity study is performed in which the influence of small variations in the incoming breaking wave on the overall results is assessed. Such an analysis should provide the industry more insight in the to-be-expected sensitivity (and hence uncertainty) of CFD simulations for these type of applications. Experiments carried out by MARIN are used to validate all the presented simulation results.


Author(s):  
Zaibin Lin ◽  
Ling Qian ◽  
Wei Bai ◽  
Zhihua Ma ◽  
Hao Chen ◽  
...  

Abstract A 3-Dimensional numerical wave tank based on the fully nonlinear potential flow theory has been developed in OpenFOAM, where the Laplace equation of velocity potential is discretized by Finite Volume Method. The water surface is tracked by the semi-Eulerian-Lagrangian method, where water particles on the free surface are allowed to move vertically only. The incident wave is generated by specifying velocity profiles at inlet boundary with a ramp function at the beginning of simulation to prevent initial transient disturbance. Additionally, an artificial damping zone is located at the end of wave tank to sufficiently absorb the outgoing waves before reaching downstream boundary. A five-point smoothing technique is applied at the free surface to eliminate the saw-tooth instability. The proposed wave model is validated against theoretical results and experimental data. The developed solver could be coupled with multiphase Navier-Stokes solvers in OpenFOAM in the future to establish an integrated versatile numerical wave tank for studying efficiently wave structure interaction problems.


2019 ◽  
Vol 31 (2) ◽  
pp. 345-357 ◽  
Author(s):  
R Manjula ◽  
S. A. Sannasiraj
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document