Bisphenol A degradation pathway and associated metabolic networks in Escherichia coli harboring the gene encoding CYP450

2020 ◽  
Vol 388 ◽  
pp. 121737 ◽  
Author(s):  
Wenxin Wang ◽  
Henan Yu ◽  
Huaming Qin ◽  
Yan Long ◽  
Jinshao Ye ◽  
...  
Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1846
Author(s):  
Juan Ibero ◽  
Beatriz Galán ◽  
José L. García

In this work, Caenibius tardaugens NBRC 16725 (strain ARI-1) (formerly Novosphingobium tardaugens) was isolated due to its capacity to mineralize estrogenic endocrine disruptors. Its genome encodes the edc genes cluster responsible for the degradation of 17β-estradiol, consisting of two putative operons (OpA and OpB) encoding the enzymes of the upper degradation pathway. Inside the edc cluster, we identified the edcR gene encoding a TetR-like protein. Genetic studies carried out with C. tardaugens mutants demonstrated that EdcR represses the promoters that control the expression of the two operons. These genetic analyses have also shown that 17β-estradiol and estrone, the second intermediate of the degradation pathway, are the true effectors of EdcR. This regulatory system has been heterologously expressed in Escherichia coli, foreseeing its use to detect estrogens in environmental samples. Genome comparisons have identified a similar regulatory system in the edc cluster of Altererythrobacter estronivorus MHB5, suggesting that this regulatory arrangement has been horizontally transferred to other bacteria.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kullathida Thongbhubate ◽  
Kanako Irie ◽  
Yumi Sakai ◽  
Akane Itoh ◽  
Hideyuki Suzuki

AbstractIn the bio-based polymer industry, putrescine is in the spotlight for use as a material. We constructed strains of Escherichia coli to assess its putrescine production capabilities through the arginine decarboxylase pathway in batch fermentation. N-Acetylglutamate (ArgA) synthase is subjected to feedback inhibition by arginine. Therefore, the 19th amino acid residue, Tyr, of argA was substituted with Cys to desensitize the feedback inhibition of arginine, resulting in improved putrescine production. The inefficient initiation codon GTG of argA was substituted with the effective ATG codon, but its replacement did not affect putrescine production. The essential genes for the putrescine production pathway, speA and speB, were cloned into the same plasmid with argAATG Y19C to form an operon. These genes were introduced under different promoters; lacIp, lacIqp, lacIq1p, and T5p. Among these, the T5 promoter demonstrated the best putrescine production. In addition, disruption of the puuA gene encoding enzyme of the first step of putrescine degradation pathway increased the putrescine production. Of note, putrescine production was not affected by the disruption of patA, which encodes putrescine aminotransferase, the initial enzyme of another putrescine utilization pathway. We also report that the strain KT160, which has a genomic mutation of YifEQ100TAG, had the greatest putrescine production. At 48 h of batch fermentation, strain KT160 grown in terrific broth with 0.01 mM IPTG produced 19.8 mM of putrescine.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lixia Fang ◽  
Jie Fan ◽  
Shulei Luo ◽  
Yaru Chen ◽  
Congya Wang ◽  
...  

AbstractTo construct a superior microbial cell factory for chemical synthesis, a major challenge is to fully exploit cellular potential by identifying and engineering beneficial gene targets in sophisticated metabolic networks. Here, we take advantage of CRISPR interference (CRISPRi) and omics analyses to systematically identify beneficial genes that can be engineered to promote free fatty acids (FFAs) production in Escherichia coli. CRISPRi-mediated genetic perturbation enables the identification of 30 beneficial genes from 108 targets related to FFA metabolism. Then, omics analyses of the FFAs-overproducing strains and a control strain enable the identification of another 26 beneficial genes that are seemingly irrelevant to FFA metabolism. Combinatorial perturbation of four beneficial genes involving cellular stress responses results in a recombinant strain ihfAL−-aidB+-ryfAM−-gadAH−, producing 30.0 g L−1 FFAs in fed-batch fermentation, the maximum titer in E. coli reported to date. Our findings are of help in rewiring cellular metabolism and interwoven intracellular processes to facilitate high-titer production of biochemicals.


1986 ◽  
Vol 261 (32) ◽  
pp. 14929-14935
Author(s):  
J W Chase ◽  
B A Rabin ◽  
J B Murphy ◽  
K L Stone ◽  
K R Williams

2000 ◽  
Vol 182 (17) ◽  
pp. 4862-4867 ◽  
Author(s):  
Marion Graupner ◽  
Huimin Xu ◽  
Robert H. White

ABSTRACT The products of two adjacent genes in the chromosome ofMethanococcus jannaschii are similar to the amino and carboxyl halves of phosphonopyruvate decarboxylase, the enzyme that catalyzes the second step of fosfomycin biosynthesis inStreptomyces wedmorensis. These two M. jannaschii genes were recombinantly expressed inEscherichia coli, and their gene products were tested for the ability to catalyze the decarboxylation of a series of α-ketoacids. Both subunits are required to form an α6β6 dodecamer that specifically catalyzes the decarboxylation of sulfopyruvic acid to sulfoacetaldehyde. This transformation is the fourth step in the biosynthesis of coenzyme M, a crucial cofactor in methanogenesis and aliphatic alkene metabolism. The M. jannaschiisulfopyruvate decarboxylase was found to be inactivated by oxygen and reactivated by reduction with dithionite. The two subunits, designated ComD and ComE, comprise the first enzyme for the biosynthesis of coenzyme M to be described.


2015 ◽  
Vol 2015 ◽  
pp. 1-21 ◽  
Author(s):  
Kese Pontes Freitas Alberton ◽  
André Luís Alberton ◽  
Jimena Andrea Di Maggio ◽  
Vanina Gisela Estrada ◽  
María Soledad Díaz ◽  
...  

This work proposes a procedure for simultaneous parameters identifiability and estimation in metabolic networks in order to overcome difficulties associated with lack of experimental data and large number of parameters, a common scenario in the modeling of such systems. As case study, the complex real problem of parameters identifiability of theEscherichia coliK-12 W3110 dynamic model was investigated, composed by 18 differential ordinary equations and 35 kinetic rates, containing 125 parameters. With the procedure, model fit was improved for most of the measured metabolites, achieving 58 parameters estimated, including 5 unknown initial conditions. The results indicate that simultaneous parameters identifiability and estimation approach in metabolic networks is appealing, since model fit to the most of measured metabolites was possible even when important measures of intracellular metabolites and good initial estimates of parameters are not available.


Sign in / Sign up

Export Citation Format

Share Document