Effect of phosphorus on the properties of phosphogypsum-based cemented backfill

2020 ◽  
Vol 399 ◽  
pp. 122993
Author(s):  
Shitong Zhou ◽  
Xibing Li ◽  
Yanan Zhou ◽  
Chendi Min ◽  
Ying Shi
Keyword(s):  
Author(s):  
Shuai Li ◽  
Yulin Zhang ◽  
Ru Feng ◽  
Haoxuan Yu ◽  
Jilong Pan ◽  
...  

As one of the main industrial solid wastes, there are a large number of free alkaloids, chemically bound alkaloids, fluoride, and heavy metal ions in Bayer process red mud (BRM), which are difficult to remove and easily pollute groundwater as a result of open storage. In order to realize the large-scale industrial application of BRM as a backfilling aggregate for underground mining and simultaneously avoid polluting groundwater, the material characteristics of BRM were analyzed through physical, mechanical, and chemical composition tests. The optimum cement–sand ratio and solid mass concentration of the backfilling were obtained based on several mixture proportion tests. According to the results of bleeding, soaking, and toxic leaching experiments, the fuzzy comprehensive evaluation method was used to evaluate the environmental impact of BRM on groundwater. The results show that chemically bound alkaloids that remained in BRM reacted with Ca2+ in PO 42.5 cement, slowed down the solidification speed, and reduced the early strength of red mud-based cemented backfill (RMCB). The hydration products in RMCB, such as AFT and C-S-H gel, had significant encapsulation, solidification, and precipitation inhibition effects on contaminants, which could reduce the contents of inorganic contaminants in soaking water by 26.8% to 93.8% and the leaching of toxic heavy metal ions by 57.1% to 73.3%. As shown by the results of the fuzzy comprehensive evaluation, the degree of pollution of the RMCB in bleeding water belonged to a medium grade Ⅲ, while that in the soaking water belonged to a low grade II. The bleeding water was diluted by 50–100 times to reach grade I after flowing into the water sump and could be totally recycled for drilling and backfilling, thus causing negligible effects on the groundwater environment.


2020 ◽  
Vol 1 ◽  
Author(s):  
Mohammed A. Hefni

Abstract The use of natural pozzolans in concrete applications is gaining more attention because of the associated environmental, economic, and technical benefits. In this study, reference cemented mine backfill samples were prepared using Portland cement, and experimental samples were prepared by partially replacing Portland cement with 10 or 20 wt.% fly ash as a byproduct (artificial) pozzolan or pumice as a natural pozzolan. Samples were cured for 7, 14, and 28 days to investigate uniaxial compressive strength development. Backfill samples containing 10 wt.% pumice had almost a similar compressive strength as reference samples. There is strong potential for pumice to be used in cemented backfill to minimize costs, improve backfill properties, and promote the sustainability of the mining industry.


2018 ◽  
Vol 37 (2) ◽  
pp. 691-705 ◽  
Author(s):  
Bing-qian Yan ◽  
Kouame-Joseph-Arthur Kouame ◽  
Dwayne Tannant ◽  
Wen-sheng Lv ◽  
Mei-feng Cai

2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Yufan Feng ◽  
Guanghua Sun ◽  
Xuejian Liang ◽  
Chenyang Liu ◽  
Yue Wang

To understand the mechanical properties of the backfill, to reveal the evolvement of micromechanical fissure of backfill, a uniaxial compression experiment was carried out for the full tailing cemented backfill. After loading, the microstructure of the specimens was observed by microscope and the pore characteristic parameters were analyzed. The results showed that the diameter of the initial damage hole of the backfill was mostly between 0 and 40 μm, the hole diameter increases gradually with the increase of pressure, and the hole diameter reached more than 5000 μm in the postpeak damage stage. The upper structure of the backfill specimen is compact while the lower structure is relatively loose. The cracks and interfaces between tailings particles and cement paste are mechanical weak surfaces, where the cracks are mainly generated and propagated. The tip of microfractures in the backfill is damaged by the influence of stress concentration. In the failure process, both surface porosity and fracture density decrease first and then increase, and the average pore diameter increases gradually. The results have guiding significance for the study of backfill mechanical properties and goaf filling design.


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Xuejie Deng ◽  
Zongxuan Yuan ◽  
Lixin Lan ◽  
Benjamin de Wit ◽  
Junwen Zhang

A novel and environmental-friendly backfill mining method known as upward slicing longwall-roadway cemented backfill (USLCB) technology has recently been proposed and successfully applied in mines extracting extra-thick coal seams located under sensitive areas. This paper studies the effects USLCB had on roof movement and failure behavior using the mechanical analysis approach. The application of USLCB in the Gonggeyingzi Mine is taken as a case study with roof movement behavior being monitored over a single mining cycle, as well as over multiple mining cycles of different coal slices. In addition, backfill performance requirements to prevent roof failures where USLCB is implemented are studied. The results show that the deflection curves of the roof at the end of each mining cycle during mining the first and the six slices are symmetrical, but they change from asymmetrical to symmetrical during the mining progresses of the second slice to the fifth slice. The final state of roof movement after the first slice, and through to the fifth slice, displays an obvious “flat bottom” pattern in the middle of the deflection curve. The roof movement during the removal of the top slice is noticeably different from other slices. The results also show that the requirements of the elastic modulus, as well as the strength of the backfill, increase as the number of mined slices increases from 1 to 5, but the requirements drop sharply for mining the top slice.


2016 ◽  
Vol 23 (9) ◽  
pp. 2329-2335 ◽  
Author(s):  
Wen-bin Xu ◽  
Yun-bin Hou ◽  
Wei-dong Song ◽  
Yi-pei Zhou ◽  
Tian-jun Yin

Sign in / Sign up

Export Citation Format

Share Document