From hazardous agriculture waste to hazardous metal scavenger: Tobacco stalk biochar-mediated sequestration of Cd leads to enhanced tobacco productivity

2021 ◽  
Vol 413 ◽  
pp. 125303
Author(s):  
Xiaona Yu ◽  
Hanjun Zhou ◽  
Xiefeng Ye ◽  
Hongliang Wang
1991 ◽  
Vol 23 (1-3) ◽  
pp. 399-404 ◽  
Author(s):  
Y. Tamaura ◽  
P. Q. Tu ◽  
S. Rojarayanont ◽  
H. Abe

Stabilization of the hazardous materials by the Fe3O4-coating method was studied. In the ferrite-formation reaction in the aqueous solution, the adsorption of the metal ions and the oxidation of the adsorbed Fe(II) ions are repeated on the surface of the ferrite particles. This reaction was adopted to the coating of the hazardous materials with the Fe3O4(or ferrite). By repeating the two steps of l)the addition of the Fe(II) aqueous solution into the suspension of the hazardous materials, and 2)the oxidation by passing air through the reaction suspension, with the Fe3O4 layer, we could coat the surfaces of the hazardous materials, such as the heavy metal sludge from the neutralization-precipitation process, the CaF2 precipitates in the treatment of the waste waters containing fluoride ion along with hazardous metal ions, and the soils containing Cd(II) ion. These Fe3O4-coated hazardous materials are very stable and no heavy metal ions are leached under the normal environmental conditions. The ferrite sludges formed in the “Ferrite Process” were highly stabilized by the present method, and by the heat-treatment.


RSC Advances ◽  
2021 ◽  
Vol 11 (18) ◽  
pp. 10891-10901
Author(s):  
Gaurav Tatrari ◽  
Chetna Tewari ◽  
Manoj Karakoti ◽  
Mayank Pathak ◽  
Ritu Jangra ◽  
...  

This work reports a facile, eco-friendly, and cost-effective mass-scale synthesis of metal-doped graphene sheets (MDGs) using agriculture waste of Quercus ilex leaves for supercapacitor applications.


Chemosphere ◽  
2008 ◽  
Vol 71 (9) ◽  
pp. 1693-1700 ◽  
Author(s):  
Ching-Hong Hsieh ◽  
Shang-Lien Lo ◽  
Ching-Yao Hu ◽  
Kaimin Shih ◽  
Wen-Hui Kuan ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (27) ◽  
pp. 16661-16674
Author(s):  
Yu-Yu Chen ◽  
Wen-Ping Jiang ◽  
Huan-Luen Chen ◽  
Hui-Chi Huang ◽  
Guan-Jhong Huang ◽  
...  

Green nanotechnology of six types of carbon nanodots (CNDs), and their sourcing from abundant natural plants, herbs, and agriculture waste, provides a cost-effective method, with low cytotoxicity and stable fluorescence, for biolabeling and for developing cell nanocarriers.


2021 ◽  
Author(s):  
Senthil Rethinam ◽  
Sardar Batıkan Kavukcu ◽  
Thiagarajan Hemalatha ◽  
A.Wilson Aruni ◽  
Aylin Sendemir

Abstract Development of nanofilters with the capability to remove toxic metal ions from effluent wastewater will be of immense help to the leather industry. In this study, fibrous nanofilter (FNF) was prepared using micro cellulosic fiber (MCF) and tea leaves microparticles (TLM) blended in poly (vinyl) alcohol (PVA). FNF was analysed for its efficacy to remove hazardous metals from tannery effluent wastewater. The FNF had promising traits of tensile strength (19.24+0.05 Mpa), elongation at break (22.31+0.12 %), flexibility (10.88+0.05 %), water absorption (37.86+0.14 %) and desorption (32.54+0.33 %). The metal adsorption studies clearly reflected the removal of toxic Cr (VI) ions from the effluent water by FNF. The study establishes an economically feasible and highly efficient way to remove hazardous metal ions from effluent wastewater.


2021 ◽  
Vol 3 (2) ◽  
pp. 36-42
Author(s):  
Theresia Evila Purwanti Sri Rahayu ◽  
Rosita Dwityaningsih ◽  
Murni Handayani ◽  
Khoeruddin Witriansyah ◽  
Ayu Pramita

Wastewater resulted from the batik dying process is known for its environmentally hazardous substances including hazardous natural and synthetic organic matter, suspended particles, and hazardous metal. But in the micro and medium scale batik textile business, wastewater treatment is mostly not carried because it does not give benefit for the owner. Economical wastewater treatment constructions can be an alternative for the business owner for their free operational cost. Batik wastewater treatment ought to be carried out to meet government standards but most importantly to decrease hazardous pollutant’s concentrations so it does not harm the environment. This society service project aims to provide alternatively economical wastewater treatment for batik business owners by applying simples and cheapest yet effective treatment methods to reduce pollutant concentrations in wastewater. Methods applied in this project including sedimentation, filtration, and landfill-bioremediation. The laboratorium analysis result shows that sedimentation and filtration are significantly reduced total suspended solid particles in wastewater from 2450 to 100 mg/L in line with wastewater decoloring from dark blue to clear yellow.


2021 ◽  
pp. 2151021
Author(s):  
Yuxuan Liu ◽  
Xinhua Cheng ◽  
Shenghui Zhang

High-performance capacitive carbon materials, derived from tobacco stalk, were prepared by a one-step carbonization process in molten carbonate. Owing to the high specific surface area (SSA) (1165.9 m2 g[Formula: see text] and heteroatom doping by the activation effect of molten salt medium for 3 h, the as-obtained carbon material with hierarchically porous structure exhibits an ideal capacitive property with delivering specific capacitances of 219.8, 188.0, 176.4, and 168.4 F g[Formula: see text] at 0.2, 0.5, 1, and 2 A g[Formula: see text], respectively, acceptable rate performance with 76.6% capacitance retention in range of 0.2–2 A g[Formula: see text], and good cyclic stability with 93% capacitance retention after 3000 charge–discharge cycles at 1 A g[Formula: see text], as well as energy density of 30.5 Wh kg[Formula: see text] at 0.2 A g[Formula: see text] and power density of 989.6 W kg[Formula: see text] at 2 A g[Formula: see text] in 1 mol L[Formula: see text] H2SO4 aqueous solution using a three-electrode system. Moreover, it delivers specific capacitances of 143.3, 140.2, 137.4, and 134.3 F g[Formula: see text] at 0.2, 0.5, 1, and 2 A g[Formula: see text], respectively, and excellent rate performance with 93.7% capacitance retention in range of 0.2–2 A g[Formula: see text], as well as energy density of 4.9 Wh kg[Formula: see text] at 0.2 A g[Formula: see text] and power density of 488.6 W kg[Formula: see text] at 2 A g[Formula: see text] in 6 mol L[Formula: see text] KOH aqueous solution using a symmetrical two-electrode system. The correlation between hierarchically porous structure with heteroatom doping and capacitive performance is also discussed.


Sign in / Sign up

Export Citation Format

Share Document