Fixed-bed reactor modeling for methanol to dimethyl ether (DME) reaction over γ-Alumina using a new practical reaction rate model

2014 ◽  
Vol 20 (4) ◽  
pp. 1942-1951 ◽  
Author(s):  
Mohammad Ghavipour ◽  
Reza Mosayebi Behbahani
2021 ◽  
Vol 11 (2) ◽  
pp. 682
Author(s):  
Gabriele Seitz ◽  
Farid Mohammadi ◽  
Holger Class

Calcium oxide/Calcium hydroxide can be utilized as a reaction system for thermochemical heat storage. It features a high storage capacity, is cheap, and does not involve major environmental concerns. Operationally, different fixed-bed reactor concepts can be distinguished; direct reactor are characterized by gas flow through the reactive bulk material, while in indirect reactors, the heat-carrying gas flow is separated from the bulk material. This study puts a focus on the indirectly operated fixed-bed reactor setup. The fluxes of the reaction fluid and the heat-carrying flow are decoupled in order to overcome limitations due to heat conduction in the reactive bulk material. The fixed bed represents a porous medium where Darcy-type flow conditions can be assumed. Here, a numerical model for such a reactor concept is presented, which has been implemented in the software DuMux. An attempt to calibrate and validate it with experimental results from the literature is discussed in detail. This allows for the identification of a deficient insulation of the experimental setup. Accordingly, heat-loss mechanisms are included in the model. However, it can be shown that heat losses alone are not sufficient to explain the experimental results. It is evident that another effect plays a role here. Using Bayesian inference, this effect is identified as the reaction rate decreasing with progressing conversion of reactive material. The calibrated model reveals that more heat is lost over the reactor surface than transported in the heat transfer channel, which causes a considerable speed-up of the discharge reaction. An observed deceleration of the reaction rate at progressed conversion is attributed to the presence of agglomerates of the bulk material in the fixed bed. This retardation is represented phenomenologically by mofifying the reaction kinetics. After the calibration, the model is validated with a second set of experimental results. To speed up the calculations for the calibration, the numerical model is replaced by a surrogate model based on Polynomial Chaos Expansion and Principal Component Analysis.


2011 ◽  
Vol 347-353 ◽  
pp. 3681-3684 ◽  
Author(s):  
Young Ho Kim ◽  
Su Gyung Lee ◽  
Byoung Kwan Yoo ◽  
Han Sol Je ◽  
Chu Sik Park

A SAPO-34 catalyst is well known to be one of the best catalysts for DME to olefins (DTO) reaction. Main products of the reaction were light olefins such as ethylene, propylene and butenes. However, the main problem is rapid deactivation of the SAPO-34 catalyst due to coke deposition during DTO reaction. In this study, various SAPO-34/ZrO2 catalysts added with ZrO2 were prepared for improving the lifetime and their physicochemical properties have been characterized by XRD and SEM. The DTO reaction over various SAPO-34/ZrO2 catalysts was carried out using a fixed bed reactor. All SAPO-34/ZrO2 catalysts showed similar activity and selectivity in the DTO reaction. The SAPO-34(9wt%)/ZrO2 catalyst was showed the best performance for the catalyst lifetime.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1027
Author(s):  
Binxiang Cai ◽  
Huazhang Liu ◽  
Wenfeng Han

Fe2O3-based catalysts were prepared by solution combustion synthesis (SCS) with metal nitrates (Fe, K, Al, Ca) as the precursors and glycine as the fuel. The activities of catalysts were evaluated in terms of ammonia synthesis reaction rate in a fixed bed reactor similar to the industrial reactors. The results indicate that the precursor of catalyst prepared by SCS is Fe2O3 which facilitates the high dispersion of promoters to provide high activity. The catalysts exhibit higher activity for ammonia synthesis than that of traditional catalysts, and the reaction rate reaches 138.5 mmol g−1 h−1. Fe2O3 prepared by SCS could be favorable precursor for ammonia synthesis catalyst. The present study provides a pathway to prepare catalyst for ammonia synthesis.


2019 ◽  
Vol 35 (2) ◽  
pp. 139-190 ◽  
Author(s):  
Nico Jurtz ◽  
Matthias Kraume ◽  
Gregor D. Wehinger

Abstract In 2006, Dixon et al. published the comprehensive review article entitled “Packed tubular reactor modeling and catalyst design using computational fluid dynamics.” More than one decade later, many researchers have contributed to novel insights, as well as a deeper understanding of the topic. Likewise, complexity has grown and new issues have arisen, for example, by coupling microkinetics with computational fluid dynamics (CFD). In this review article, the latest advances are summarized in the field of modeling fixed-bed reactors with particle-resolved CFD, i.e. a geometric resolution of every pellet in the bed. The current challenges of the detailed modeling are described, i.e. packing generation, meshing, and solving with an emphasis on coupling microkinetics with CFD. Applications of this detailed approach are discussed, i.e. fluid dynamics and pressure drop, dispersion, heat and mass transfer, as well as heterogeneous catalytic systems. Finally, conclusions and future prospects are presented.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Michael Fabrik ◽  
Amgad Salama ◽  
Hussameldin Ibrahim

Abstract The reforming of methane is an important industrial process, and reactor modeling and simulation is frequently employed as a design and analysis tool in understanding this process. While much research work is devoted to catalyst formulations, reaction mechanisms, and reactor designs, this review aims to summarize the literature concerning the simulation of methane reforming. Applications in industrial practice are highlighted, and the three main approaches to representing the reactions are briefly discussed. An overview of simulation studies focusing on methane reforming is presented. The three central methods for fixed-bed reactor modeling are discussed. Various approaches and modern examples are discussed, presenting their modeling methods and key findings. The overall objective of this paper is to provide a dedicated review of simulation work done for methane reforming and provide a reference for understanding this field and identifying possible new paths.


Author(s):  
Sandeep Kumar ◽  
Dinesh Kumar ◽  
Neeru Anand ◽  
Vinay Shah

Abstract Recently chemical consumption has increased due to the growth of human population and industrialization. Depleting fuel reserves and increase in chemicals rise has led and researcher to focus on alternative bio based chemicals. Glycerol which is produced as a major byproduct from the trans-esterification reaction of fatty acids for producing biodiesel has been used in this work for conversion to value added products. Conversion of glycerol in presence of alumina, MCM-22 (pure silica based mesoporous catalyst) and ZSM-5 (Si-Al based catalyst) is investigated at different temperature and catalyst weight in a fixed bed reactor. The conversion of glycerol was found to be maximum in presence of alumina whereas maximum liquid products were obtained with ZSM-5. GC/MS analysis confirmed the production of Furan compounds in higher fraction with both alumina as well as ZSM-5 showing the importance of acid sites for the glycerol conversion to higher hydrocarbons. The GC/MS analysis of liquid product obtained in presence of catalyst was also observed with high area% of unconverted glycerol. The order is as follow 54% (MCM-22) > 44% (ZSM-5) > 42.2% (Alumina). For the investigation of the conversion for varying catalyst weight (0–3 g with 0.5 g weight difference), reaction temperature were varied between 450 and 550 °C. Different values of n = 0, 1, 2 etc. were used for the fitting of the respective plot. A change in reaction rate and the rate constant indicated that with the change of temperature, reaction rate was increased. The rate constant value obtained between 0.09 and 0.12 h−1. In all cases 450 °C and catalyst weight of 2.5 g was obtained as optimum for higher liquid yield. TGA analysis of spent catalyst also showed that alumina give high yield (∼50% by weight) of coke as compared to ZSM-5 and MCM-22.


AIChE Journal ◽  
2014 ◽  
Vol 60 (10) ◽  
pp. 3511-3523 ◽  
Author(s):  
Barbara Browning ◽  
Nida Sheibat-Othman ◽  
Isabelle Pitault ◽  
Timothy F. L. McKenna

Sign in / Sign up

Export Citation Format

Share Document