Epitope and HLA-type independent monitoring of antigen-specific T-cells after treatment with dendritic cells presenting full-length tumor antigens

2012 ◽  
Vol 377 (1-2) ◽  
pp. 23-36 ◽  
Author(s):  
An M.T. Van Nuffel ◽  
Sandra Tuyaerts ◽  
Daphné Benteyn ◽  
Sofie Wilgenhof ◽  
Jurgen Corthals ◽  
...  
2012 ◽  
Vol 20 (5) ◽  
pp. 1063-1074 ◽  
Author(s):  
An MT Van Nuffel ◽  
Daphné Benteyn ◽  
Sofie Wilgenhof ◽  
Lauranne Pierret ◽  
Jurgen Corthals ◽  
...  

Science ◽  
2018 ◽  
Vol 362 (6415) ◽  
pp. 694-699 ◽  
Author(s):  
Derek J. Theisen ◽  
Jesse T. Davidson ◽  
Carlos G. Briseño ◽  
Marco Gargaro ◽  
Elvin J. Lauron ◽  
...  

During the process of cross-presentation, viral or tumor-derived antigens are presented to CD8+ T cells by Batf3-dependent CD8α+/XCR1+ classical dendritic cells (cDC1s). We designed a functional CRISPR screen for previously unknown regulators of cross-presentation, and identified the BEACH domain–containing protein WDFY4 as essential for cross-presentation of cell-associated antigens by cDC1s in mice. However, WDFY4 was not required for major histocompatibility complex class II presentation, nor for cross-presentation by monocyte-derived dendritic cells. In contrast to Batf3–/– mice, Wdfy4–/– mice displayed normal lymphoid and nonlymphoid cDC1 populations that produce interleukin-12 and protect against Toxoplasma gondii infection. However, similar to Batf3–/– mice, Wdfy4–/– mice failed to prime virus-specific CD8+ T cells in vivo or induce tumor rejection, revealing a critical role for cross-presentation in antiviral and antitumor immunity.


2017 ◽  
Vol 19 (suppl_6) ◽  
pp. vi117-vi118
Author(s):  
Changlin Yang ◽  
Anjelika Dechkovskaia ◽  
Jeffrey Drake ◽  
Fernanda Guimaraes ◽  
Paul Kubilis ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Sung Won Lee ◽  
Hyun Jung Park ◽  
Nayoung Kim ◽  
Seokmann Hong

Natural killer dendritic cells (NKDCs) possess potent anti-tumor activity, but the cellular effect of NKDC interactions with other innate immune cells is unclear. In this study, we demonstrate that the interaction of NKDCs and natural killer T (NKT) cells is required for the anti-tumor immune responses that are elicited byα-galactosylceramide (α-GC) in mice. The rapid and strong expression of interferon-γby NKDCs afterα-GC stimulation was dependent on NKT cells. Various NK and DC molecular markers and cytotoxic molecules were up-regulated followingα-GC administration. This up-regulation could improve NKDC presentation of tumor antigens and increase cytotoxicity against tumor cells. NKDCs were required for the stimulation of DCs, NK cells, and NKT cells. The strong anti-tumor immune responses elicited byα-GC may be due to the down-regulation of regulatory T cells. Furthermore, the depletion of NKDCs dampened the tumor clearance mediated byα-GC-stimulated NKT cellsin vivo. Taken together, these results indicate that complex interactions of innate immune cells might be required to achieve optimal anti-tumor immune responses during the early stages of tumorigenesis.


Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 171
Author(s):  
Akihiro Watanabe ◽  
Kimihiro Yamashita ◽  
Mitsugu Fujita ◽  
Akira Arimoto ◽  
Masayasu Nishi ◽  
...  

(1) Background: Cancer vaccines are administered to induce cytotoxic CD8+ T cells (CTLs) specific for tumor antigens. Invariant natural killer T (iNKT) cells, the specific T cells activated by α-galactosylceramide (α-GalCer), play important roles in this process as they are involved in both innate and adaptive immunity. We developed a new cancer vaccine strategy in which dendritic cells (DCs) were loaded with an exogenous ovalbumin (OVA) protein by electroporation (EP) and pulsed with α-GalCer. (2) Methods: We generated bone marrow-derived DCs from C57BL/6 mice, loaded full-length ovalbumin proteins to the DCs by EP, and pulsed them with α-GalCer (OVA-EP-galDCs). The OVA-EP-galDCs were intravenously administered to C57BL/6 mice as a vaccine. We then investigated subsequent immune responses, such as the induction of iNKT cells, NK cells, intrinsic DCs, and OVA-specific CD8+ T cells, including tissue-resident memory T (TRM) cells. (3) Results: The OVA-EP-galDC vaccine efficiently rejected subcutaneous tumors in a manner primarily dependent on CD8+ T cells. In addition to the OVA-specific CD8+ T cells both in early and late phases, we observed the induction of antigen-specific TRM cells in the skin. (4) Conclusions: The OVA-EP-galDC vaccine efficiently induced antigen-specific antitumor immunity, which was sustained over time, as shown by the TRM cells.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2788-2788
Author(s):  
Jacalyn Rosenblatt ◽  
Richard Stone ◽  
Corrine Lenahan ◽  
Zekwui Wu ◽  
Baldev Vasir ◽  
...  

Abstract We have previously demonstrated that dendritic cells (DCs) fused with malignant cells stimulate anti-tumor immunity by presenting a braod array of tumor antigens in the context of DC mediated costimulation. DCs differentiated from leukemia cells (LDCs) are also being explored as cancer vaccines in which leukemia associated antigens are presented. We examined the phenotypic and functional characteristics of DC/Leukemia fusions and LDCs to assess their potential as tumor vaccines. Leukemia blasts were isolated from peripheral blood of patients with AML. CD34 selection was performed on a subset of samples by magnetic bead separation. LDCs were generated by culturing blasts in the presence of GM-CSF, IL-4 and TNFα for 7 days. Alternatively, leukemia cells were fused with DC by coculture in the presence of polyethylene glycol. Differentiation of leukemic blasts into LDCs resulted in increased expression of HLA-DR and CD 11c. Unlike normal peripheral blood mononuclear cells, differentiation of leukemic blasts resulted in only modest expression of the costimulatory molecules, CD80 and CD86 (mean expression 12% and 30%) and no increase in expression of the maturation marker, CD83 (mean expression 4%). In addition, expression of the leukemia associated antigen c-kit (CD117) was lower on LDCs than on blasts (mean expression 34% on blasts, 15% on LDCs). To assess the capacity of the primitive leukemia clonal population to differentiate into DCs, CD34+ cells were isolated from the blast population and assessed after cytokine differentiation. Cytokine differentiation did not result in upregulation of CD80, CD83, or CD86 expression in the CD34+ population (mean expression 5%, 2%, 17%). In contrast, differentiation of the CD34- population resulted in moderate expression of CD80, CD83 and CD86 (mean expression 15%, 14%, 48%). In contrast to LDCs which do not strongly express co-stimulatory molecules and lose expression of leukemia associated antigens, fusion cells expressed both DC and tumor associated antigens (mean fusion efficiency 27%). The functional characteristics of DC derived from leukemic blasts were examined. Allogeneic T cell proliferation in response to stimulation by LDCs was not significantly higher than after stimulation with undifferentiated blasts (ratio 10:1, mean SI 17% with LDCs vs 9% with undifferentiated blasts, p=0.19). Neither stimulation with blasts nor with LDCs induced T cell production of interferon gamma. In contrast, interferon gamma production by T cells in response to stimulation with fusion cells was higher than after stimulation with undifferentiated blasts. In summary, LDCs do not demonstrate normal upregulation of costimulatory molecules, and lose expression of tumor antigens. In contrast, DC/leukemia fusions coexpress tumor and DC associated markers. While LDCs stimulate interferon gamma production by T cells poorly, fusion cells more potently stimulate interferon gamma production by allogeneic T cells than do undifferentiated blasts. This suggests that LDC may be ineffective as a tumor vaccine in AML, and that fusion cells may be superior to LDC in generating effective anti-tumor immune responses. Strategies to enhance the ability of both LDC and of fusion cells to stimulate anti-tumor immunity are being explored.


2002 ◽  
Vol 195 (12) ◽  
pp. 1653-1659 ◽  
Author(s):  
Alexis M. Kalergis ◽  
Jeffrey V. Ravetch

Induction of tumor-specific immunity requires that dendritic cells (DCs) efficiently capture and present tumor antigens to result in the expansion and activation of tumor-specific cytotoxic T cells. The transition from antigen capture to T cell stimulation requires a maturation signal; in its absence tolerance, rather than immunity may develop. While immune complexes (ICs) are able to enhance antigen capture, they can be poor at inducing DC maturation, naive T cell activation and protective immunity. We now demonstrate that interfering with the inhibitory signal delivered by FcγRIIB on DCs converts ICs to potent maturation agents and results in T cell activation. Applying this approach to immunization with DCs pulsed ex-vivo with ICs, we have generated antigen-specific CD8+ T cells in vivo and achieved efficient protective immunity in a murine melanoma model. These data imply that ICs may normally function to maintain tolerance through the binding to inhibitory FcγRs on DCs, but they can be converted to potent immunogenic stimuli by selective engagement of activating FcγRs. This mechanism suggests a novel approach to the development of tumor vaccines.


Nanomedicine ◽  
2020 ◽  
Vol 15 (17) ◽  
pp. 1641-1652
Author(s):  
Wen Liu ◽  
Yuki Takahashi ◽  
Masaki Morishita ◽  
Makiya Nishikawa ◽  
Yoshinobu Takakura

Aim: Tumor-derived small extracellular vesicles (TEVs) are considered for use in inducing tumor antigen-specific immune responses as they contain tumor antigens. The delivery of tumor antigens to the antigen presentation cells (especially dendritic cells [DCs]), and the activation of DCs are the main challenges of TEV therapy. Materials & methods: TEVs were modified with CD40 ligand (CD40L), which can target CD40 expressed on the surface of DCs and can activate them via CD40L-CD40 interactions. Results: It was found that CD40L-TEVs were efficiently taken up by DCs and also activated them. Moreover, tumor antigens were efficiently presented to the T cells by DCs treated with CD40L-TEVs. Conclusion: This study proved that CD40L-modification of TEVs will be helpful for further development of TEV-based tumor vaccination.


Sign in / Sign up

Export Citation Format

Share Document