Modulation of the transcriptional response of innate immune and RNAi genes upon exposure to dsRNA and LPS in silkmoth-derived Bm5 cells overexpressing BmToll9-1 receptor

2014 ◽  
Vol 66 ◽  
pp. 10-19 ◽  
Author(s):  
Jisheng Liu ◽  
Anna Kolliopoulou ◽  
Guy Smagghe ◽  
Luc Swevers
Author(s):  
Katie V. Farrant ◽  
Livia Spiga ◽  
Jane C. Davies ◽  
Huw D. Williams

ABSTRACTPseudomonas aeruginosa is a significant nosocomial pathogen and associated with lung infections in cystic fibrosis (CF). Once established, P. aeruginosa infections persist and are rarely eradicated despite the host immune cells producing antimicrobial oxidants, including hypochlorous acid (HOCl) and hypothiocyanous acid (HOSCN). There is limited knowledge as to how P. aeruginosa senses, responds to, and survives attack from HOCl and HOSCN, and the contribution of such responses to its success as a CF pathogen. We investigated the P. aeruginosa response to these oxidants by screening 707 transposon mutants, with mutations in regulatory genes, for altered growth following HOCl exposure. We identified regulators involved in antibiotic resistance, methionine biosynthesis and catabolite repression, and PA14_07340, the homologue of the Escherichia coli HOCl-sensor RclR (30% identical), that were required for HOCl survival. We have shown that RclR (PA14_07340) protects specifically against HOCl and HOSCN stress, and responds to both oxidants by upregulating expression of a putative peroxiredoxin, rclX (PA14_07355). While there was specificity in the transcriptional response to HOCl (231 genes upregulated) and HOSCN (105 genes upregulated) there was considerable overlap, with 74 genes upregulated by both oxidants. These included genes encoding the type III secretion system (T3SS), sulphur and taurine transport, and the MexEF-OprN efflux pump. RclR coordinated the transcriptional response to HOCl and HOSCN, including upregulation of pyocyanin biosynthesis genes, and in response to HOSCN alone RclR downregulated chaperone genes. These data indicate that the P. aeruginosa response to HOCl and HOSCN is multifaceted, with RclR playing an essential role.


Author(s):  
Eran Mick ◽  
Jack Kamm ◽  
Angela Oliveira Pisco ◽  
Kalani Ratnasiri ◽  
Jennifer M Babik ◽  
...  

We studied the host transcriptional response to SARS-CoV-2 by performing metagenomic sequencing of upper airway samples in 238 patients with COVID-19, other viral or non-viral acute respiratory illnesses (ARIs). Compared to other viral ARIs, COVID-19 was characterized by a diminished innate immune response, with reduced expression of genes involved in toll-like receptor and interleukin signaling, chemokine binding, neutrophil degranulation and interactions with lymphoid cells. Patients with COVID-19 also exhibited significantly reduced proportions of neutrophils and macrophages, and increased proportions of goblet, dendritic and B-cells, compared to other viral ARIs. Using machine learning, we built 26-, 10- and 3-gene classifiers that differentiated COVID-19 from other acute respiratory illnesses with AUCs of 0.980, 0.950 and 0.871, respectively. Classifier performance was stable at low viral loads, suggesting utility in settings where direct detection of viral nucleic acid may be unsuccessful. Taken together, our results illuminate unique aspects of the host transcriptional response to SARS-CoV-2 in comparison to other respiratory viruses and demonstrate the feasibility of COVID-19 diagnostics based on patient gene expression.


2020 ◽  
Author(s):  
J. Cole ◽  
A. Angyal ◽  
R. D. Emes ◽  
T.J. Mitchell ◽  
M.J. Dickman ◽  
...  

AbstractEpigenetic modifications regulate gene expression in the host response to a diverse range of pathogens. The extent and consequences of epigenetic modification during macrophage responses to Streptococcus pneumoniae, and the role of pneumolysin, a key Streptococcus pneumoniae virulence factor, in influencing these responses, are currently unknown. To investigate this, we infected human monocyte derived macrophages (MDMs) with Streptococcus pneumoniae and addressed whether pneumolysin altered the epigenetic landscape and the associated acute macrophage transcriptional response using a combined transcriptomic and proteomic approach. Transcriptomic analysis identified 503 genes that were differentially expressed in a pneumolysin-dependent manner in these samples. Pathway analysis highlighted the involvement of transcriptional responses to core innate responses to pneumococci including modules associated with metabolic pathways activated in response to infection, oxidative stress responses and NFκB, NOD-like receptor and TNF signalling pathways. Quantitative proteomic analysis confirmed pneumolysin-regulated protein expression, early after bacterial challenge, in representative transcriptional modules associated with innate immune responses. In parallel, quantitative mass spectrometry identified global changes in the relative abundance of histone post translational modifications (PTMs) upon pneumococcal challenge. We identified an increase in the relative abundance of H3K4me1, H4K16ac and a decrease in H3K9me2 and H3K79me2 in a PLY-dependent fashion. We confirmed that pneumolysin blunted early transcriptional responses involving TNF-α and IL-6 expression. Vorinostat, a histone deacetylase inhibitor, similarly downregulated TNF production, reprising the pattern observed with pneumolysin. In conclusion, widespread changes in the macrophage transcriptional response are regulated by pneumolysin and are associated with global changes in histone PTMs. Modulating histone PTMs can reverse pneumolysin-associated transcriptional changes influencing innate immune responses, suggesting that epigenetic modification by pneumolysin plays a role in dampening the innate responses to pneumococci.Author summaryPneumolysin is a toxin that contributes to how Streptococcus pneumoniae, the leading cause of pneumonia, causes disease. In this study, the toxin alters gene expression in immune cells called macrophages, one of the first lines of defence against bacteria at sites of infection. Modulation involved multiple immune responses, including generation of chemical signals coordinating responses in immune cells termed cytokines. In addition, changes were observed in histone proteins that are involved in controlling gene expression in the cell. Pneumolysin reduced early production of the cytokine TNF-α and a medicine vorinostat that modifies these ‘epigenetic’ histone modifications had a similar affect, suggesting epigenetic mechanisms contribute to the ability of pneumolysin to reduce immune responses.


Author(s):  
Lakbira Sheffield ◽  
Noah Sciambra ◽  
Alysa Evans ◽  
Eli Hagedorn ◽  
Casey Goltz ◽  
...  

Abstract Advanced age in humans is associated with greater susceptibility to and higher mortality rates from infections, including infections with some RNA viruses. The underlying innate immune mechanisms, which represent the first line of defense against pathogens, remain incompletely understood. Drosophila melanogaster is able to mount potent and evolutionarily conserved innate immune defenses against a variety of microorganisms including viruses and serves as an excellent model organism for studying host-pathogen interactions. With its relatively short lifespan, Drosophila also is an organism of choice for aging studies. Despite numerous advantages that this model offers, Drosophila has not been used to its full potential to investigate the response of the aged host to viral infection. Here we show that, in comparison to younger flies, aged Drosophila succumb more rapidly to infection with the RNA-containing Flock House Virus (FHV) due to an age-dependent defect in disease tolerance. Relative to younger individuals, we find that older Drosophila mount transcriptional responses characterized by differential regulation of more genes and genes regulated to a greater extent. We show that loss of disease tolerance to FHV with age associates with a stronger regulation of genes involved in apoptosis, some genes of the Drosophila Immune deficiency (IMD) NF-kB pathway and genes whose products function in mitochondria and mitochondrial respiration. Our work shows that Drosophila can serve as a model to investigate host-virus interactions during aging and furthermore sets the stage for future analysis of the age-dependent mechanisms that govern survival and control of virus infections at older age.


2020 ◽  
Author(s):  
Alexandra R. Willis ◽  
Winnie Zhao ◽  
Ronesh Sukhdeo ◽  
Lina Wadi ◽  
Hala Tamim El Jarkass ◽  
...  

AbstractInherited immunity is an emerging field and describes how the transfer of immunity from parents to offspring can promote progeny survival in the face of infection. The mechanisms of how inherited immunity is induced are mostly unknown. The intracellular parasite Nematocida parisii is a natural microsporidian pathogen of Caenorhabditis elegans. Here, we show that N. parisii-infected worms produce primed offspring that are resistant to microsporidia infection. We find that immunity is induced in a dose dependent manner and lasts for a single generation. Intergenerational immunity prevents host cell invasion by N. parisii and also enhances survival to the bacterial pathogen Pseudomonas aeruginosa. Further, we show that inherited immunity is triggered by the host transcriptional response to infection, which can also be induced through maternal somatic depletion of negative regulators PALS-22 and the retinoblastoma protein ortholog LIN-35. We show that other biotic and abiotic stresses, such as viral infection and cadmium exposure, that induce a similar transcriptional response to microsporidia can also induce immunity in progeny. Our results demonstrate that distinct stimuli can induce inherited immunity to provide resistance against multiple classes of pathogens. These results show that activation of an innate immune response can provide protection against pathogens not only within a generation, but also in the next generation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Joby Cole ◽  
Adrienn Angyal ◽  
Richard D. Emes ◽  
Tim John Mitchell ◽  
Mark J. Dickman ◽  
...  

Epigenetic modifications regulate gene expression in the host response to a diverse range of pathogens. The extent and consequences of epigenetic modification during macrophage responses to Streptococcus pneumoniae, and the role of pneumolysin, a key Streptococcus pneumoniae virulence factor, in influencing these responses, are currently unknown. To investigate this, we infected human monocyte derived macrophages (MDMs) with Streptococcus pneumoniae and addressed whether pneumolysin altered the epigenetic landscape and the associated acute macrophage transcriptional response using a combined transcriptomic and proteomic approach. Transcriptomic analysis identified 503 genes that were differentially expressed in a pneumolysin-dependent manner in these samples. Pathway analysis highlighted the involvement of transcriptional responses to core innate responses to pneumococci including modules associated with metabolic pathways activated in response to infection, oxidative stress responses and NFκB, NOD-like receptor and TNF signalling pathways. Quantitative proteomic analysis confirmed pneumolysin-regulated protein expression, early after bacterial challenge, in representative transcriptional modules associated with innate immune responses. In parallel, quantitative mass spectrometry identified global changes in the relative abundance of histone post translational modifications (PTMs) upon pneumococcal challenge. We identified an increase in the relative abundance of H3K4me1, H4K16ac and a decrease in H3K9me2 and H3K79me2 in a PLY-dependent fashion. We confirmed that pneumolysin blunted early transcriptional responses involving TNF-α and IL-6 expression. Vorinostat, a histone deacetylase inhibitor, similarly downregulated TNF-α production, reprising the pattern observed with pneumolysin. In conclusion, widespread changes in the macrophage transcriptional response are regulated by pneumolysin and are associated with global changes in histone PTMs. Modulating histone PTMs can reverse pneumolysin-associated transcriptional changes influencing innate immune responses, suggesting that epigenetic modification by pneumolysin plays a role in dampening the innate responses to pneumococci.


2015 ◽  
Author(s):  
John D Blischak ◽  
Ludovic Tailleux ◽  
Amy Mitrano ◽  
Luis B Barreiro ◽  
Yoav Gilad

The innate immune system provides the first response to pathogen infection and orchestrates the activation of the adaptive immune system. Though a large component of the innate immune response is common to all infections, pathogen-specific responses have been documented as well. The innate immune response is thought to be especially critical for fighting infection with Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis (TB). While TB can be deadly, only 5-10% of individuals infected with MTB develop active disease. The risk for disease susceptibility is, at least partly, heritable. Studies of inter-individual variation in the innate immune response to MTB infection may therefore shed light on the genetic basis for variation in susceptibility to TB. Yet, to date, we still do not know which properties of the innate immune response are specific to MTB infection and which represent a general response to pathogen infection. To begin addressing this gap, we infected macrophages with eight different bacteria, including different MTB strains and related mycobacteria, and studied the transcriptional response to infection. Although the ensued gene regulatory responses were largely consistent across the bacterial infection treatments, we were able to identify a novel subset of genes whose regulation was affected specifically by infection with mycobacteria. Genetic variants that are associated with regulatory differences in these genes should be considered candidate loci for explaining inter-individual susceptibility TB.


2017 ◽  
Vol 312 (6) ◽  
pp. L861-L872 ◽  
Author(s):  
Rachel M. Medal ◽  
Amanda M. Im ◽  
Yasutoshi Yamamoto ◽  
Omar Lakhdari ◽  
Timothy S. Blackwell ◽  
...  

In preterm infants, soluble inflammatory mediators target lung mesenchymal cells, disrupting airway and alveolar morphogenesis. However, how mesenchymal cells respond directly to microbial stimuli remains poorly characterized. Our objective was to measure the genome-wide innate immune response in fetal lung mesenchymal cells exposed to the bacterial endotoxin lipopolysaccharide (LPS). With the use of Affymetrix MoGene 1.0st arrays, we showed that LPS induced expression of unique innate immune transcripts heavily weighted toward CC and CXC family chemokines. The transcriptional response was different between cells from E11, E15, and E18 mouse lungs. In all cells tested, LPS inhibited expression of a small core group of genes including the VEGF receptor Vegfr2. Although best characterized in vascular endothelial populations, we demonstrated here that fetal mouse lung mesenchymal cells express Vegfr2 and respond to VEGF-A stimulation. In mesenchymal cells, VEGF-A increased cell migration, activated the ERK/AKT pathway, and promoted FOXO3A nuclear exclusion. With the use of an experimental coculture model of epithelial-mesenchymal interactions, we also showed that VEGFR2 inhibition prevented formation of three-dimensional structures. Both LPS and tyrosine kinase inhibition reduced three-dimensional structure formation. Our data suggest a novel mechanism for inflammation-mediated defects in lung development involving reduced VEGF signaling in lung mesenchyme.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sarah S. Geiger ◽  
Javier Traba ◽  
Nathan Richoz ◽  
Taylor K. Farley ◽  
Stephen R. Brooks ◽  
...  

AbstractIn mice, time of day strongly influences lethality in response to LPS, with survival greatest at the beginning compared to the end of the light cycle. Here we show that feeding, rather than light, controls time-of-day dependent LPS sensitivity. Mortality following LPS administration is independent of cytokine production and the clock regulator BMAL1 expressed in myeloid cells. In contrast, deletion of BMAL1 in hepatocytes globally disrupts the transcriptional response to the feeding cycle in the liver and results in constitutively high LPS sensitivity. Using RNAseq and functional validation studies we identify hepatic farnesoid X receptor (FXR) signalling as a BMAL1 and feeding-dependent regulator of LPS susceptibility. These results show that hepatocyte-intrinsic BMAL1 and FXR signalling integrate nutritional cues to regulate survival in response to innate immune stimuli. Understanding hepatic molecular programmes operational in response to these cues could identify novel pathways for targeting to enhance endotoxemia resistance.


Sign in / Sign up

Export Citation Format

Share Document