histone ptms
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 19)

H-INDEX

7
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Albert Agustinus ◽  
Ramya Raviram ◽  
Bhargavi Dameracharla ◽  
Jens Luebeck ◽  
Stephanie Stransky ◽  
...  

Chromosomal instability (CIN) and epigenetic alterations are characteristics of advanced and metastatic cancers [1-4], yet whether they are mechanistically linked is unknown. Here we show that missegregation of mitotic chromosomes, their sequestration in micronuclei [5, 6], and subsequent micronuclear envelope rupture [7] profoundly disrupt normal histone post-translational modifications (PTMs), a phenomenon conserved across humans and mice as well as cancer and non-transformed cells. Some of the changes to histone PTMs occur due to micronuclear envelope rupture whereas others are inherited from mitotic abnormalities prior to micronucleus formation. Using orthogonal techniques, we show that micronuclei exhibit extensive differences in chromatin accessibility with a strong positional bias between promoters and distal or intergenic regions. Finally, we show that inducing CIN engenders widespread epigenetic dysregulation and that chromosomes which transit in micronuclei experience durable abnormalities in their accessibility long after they have been reincorporated into the primary nucleus. Thus, in addition to genomic copy number alterations, CIN can serve as a vehicle for epigenetic reprogramming and heterogeneity in cancer.


Author(s):  
Antony J. Burton ◽  
Ghaith M. Hamza ◽  
Andrew X. Zhang ◽  
Tom W. Muir

Protein–protein interactions (PPIs) in the nucleus play key roles in transcriptional regulation and ensure genomic stability. Critical to this are histone-mediated PPI networks, which are further fine-tuned through dynamic post-translational modification. Perturbation to these networks leads to genomic instability and disease, presenting epigenetic proteins as key therapeutic targets. This mini-review will describe progress in mapping the combinatorial histone PTM landscape, and recent chemical biology approaches to map histone interactors. Recent advances in mapping direct interactors of histone PTMs as well as local chromatin interactomes will be highlighted, with a focus on mass-spectrometry based workflows that continue to illuminate histone-mediated PPIs in unprecedented detail.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Roberta Noberini ◽  
Evelyn Oliva Savoia ◽  
Stefania Brandini ◽  
Francesco Greco ◽  
Francesca Marra ◽  
...  

Abstract Background Increasing evidence linking epigenetic mechanisms and different diseases, including cancer, has prompted in the last 15 years the investigation of histone post-translational modifications (PTMs) in clinical samples. Methods allowing the isolation of histones from patient samples followed by the accurate and comprehensive quantification of their PTMs by mass spectrometry (MS) have been developed. However, the applicability of these methods is limited by the requirement for substantial amounts of material. Results To address this issue, in this study we streamlined the protein extraction procedure from low-amount clinical samples and tested and implemented different in-gel digestion strategies, obtaining a protocol that allows the MS-based analysis of the most common histone PTMs from laser microdissected tissue areas containing as low as 1000 cells, an amount approximately 500 times lower than what is required by available methods. We then applied this protocol to breast cancer patient laser microdissected tissues in two proof-of-concept experiments, identifying differences in histone marks in heterogeneous regions selected by either morphological evaluation or MALDI MS imaging. Conclusions These results demonstrate that analyzing histone PTMs from very small tissue areas and detecting differences from adjacent tumor regions is technically feasible. Our method opens the way for spatial epi-proteomics, namely the investigation of epigenetic features in the context of tissue and tumor heterogeneity, which will be instrumental for the identification of novel epigenetic biomarkers and aberrant epigenetic mechanisms.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Kevin Chappell ◽  
Stefan Graw ◽  
Charity L. Washam ◽  
Aaron J. Storey ◽  
Chris Bolden ◽  
...  

Abstract Background Histone post-translational modifications (PTMs) play an important role in our system by regulating the structure of chromatin and therefore contribute to the regulation of gene and protein expression. Irregularities in histone PTMs can lead to a variety of different diseases including various forms of cancer. Histone modifications are analyzed using high resolution mass spectrometry, which generate large amounts of data that requires sophisticated bioinformatics tools for analysis and visualization. PTMViz is designed for downstream differential abundance analysis and visualization of both protein and/or histone modifications. Results PTMViz provides users with data tables and visualization plots of significantly differentiated proteins and histone PTMs between two sample groups. All the data is packaged into interactive data tables and graphs using the Shiny platform to help the user explore the results in a fast and efficient manner to assess if changes in the system are due to protein abundance changes or epigenetic changes. In the example data provided, we identified several proteins differentially regulated in the dopaminergic pathway between mice treated with methamphetamine compared to a saline control. We also identified histone post-translational modifications including histone H3K9me, H3K27me3, H4K16ac, and that were regulated due to drug exposure. Conclusions Histone modifications play an integral role in the regulation of gene expression. PTMViz provides an interactive platform for analyzing proteins and histone post-translational modifications from mass spectrometry data in order to quickly identify differentially expressed proteins and PTMs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Joby Cole ◽  
Adrienn Angyal ◽  
Richard D. Emes ◽  
Tim John Mitchell ◽  
Mark J. Dickman ◽  
...  

Epigenetic modifications regulate gene expression in the host response to a diverse range of pathogens. The extent and consequences of epigenetic modification during macrophage responses to Streptococcus pneumoniae, and the role of pneumolysin, a key Streptococcus pneumoniae virulence factor, in influencing these responses, are currently unknown. To investigate this, we infected human monocyte derived macrophages (MDMs) with Streptococcus pneumoniae and addressed whether pneumolysin altered the epigenetic landscape and the associated acute macrophage transcriptional response using a combined transcriptomic and proteomic approach. Transcriptomic analysis identified 503 genes that were differentially expressed in a pneumolysin-dependent manner in these samples. Pathway analysis highlighted the involvement of transcriptional responses to core innate responses to pneumococci including modules associated with metabolic pathways activated in response to infection, oxidative stress responses and NFκB, NOD-like receptor and TNF signalling pathways. Quantitative proteomic analysis confirmed pneumolysin-regulated protein expression, early after bacterial challenge, in representative transcriptional modules associated with innate immune responses. In parallel, quantitative mass spectrometry identified global changes in the relative abundance of histone post translational modifications (PTMs) upon pneumococcal challenge. We identified an increase in the relative abundance of H3K4me1, H4K16ac and a decrease in H3K9me2 and H3K79me2 in a PLY-dependent fashion. We confirmed that pneumolysin blunted early transcriptional responses involving TNF-α and IL-6 expression. Vorinostat, a histone deacetylase inhibitor, similarly downregulated TNF-α production, reprising the pattern observed with pneumolysin. In conclusion, widespread changes in the macrophage transcriptional response are regulated by pneumolysin and are associated with global changes in histone PTMs. Modulating histone PTMs can reverse pneumolysin-associated transcriptional changes influencing innate immune responses, suggesting that epigenetic modification by pneumolysin plays a role in dampening the innate responses to pneumococci.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Stefano Amatori ◽  
Simona Tavolaro ◽  
Stefano Gambardella ◽  
Mirco Fanelli

Abstract Background The oncogenic role of histone mutations is one of the most relevant discovery in cancer epigenetics. Recurrent mutations targeting histone genes have been described in pediatric brain tumors, chondroblastoma, giant cell tumor of bone and other tumor types. The demonstration that mutant histones can be oncogenic and drive the tumorigenesis in pediatric tumors, led to the coining of the term “oncohistones.” The first identified histone mutations were localized at or near residues normally targeted by post-translational modifications (PTMs) in the histone N-terminal tails and suggested a possible interference with histone PTMs regulation and reading. Main body In this review, we describe the peculiar organization of the multiple genes that encode histone proteins, and the latter advances in both the identification and the biological role of histone mutations in cancer. Recent works show that recurrent somatic mutations target both N-terminal tails and globular histone fold domain in diverse tumor types. Oncohistones are often dominant-negative and occur at higher frequencies in tumors affecting children and adolescents. Notably, in many cases the mutations target selectively only some of the genes coding the same histone protein and are frequently associated with specific tumor types or, as documented for histone variant H3.3 in pediatric glioma, with peculiar tumors arising from specific anatomic locations. Conclusion The overview of the most recent advances suggests that the oncogenic potential of histone mutations can be exerted, together with the alteration of histone PTMs, through the destabilization of nucleosome and DNA–nucleosome interactions, as well as through the disruption of higher-order chromatin structure. However, further studies are necessary to fully elucidate the mechanism of action of oncohistones, as well as to evaluate their possible application to cancer classification, prognosis and to the identification of new therapies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Priscilla Van den Ackerveken ◽  
Alison Lobbens ◽  
Jean-Valery Turatsinze ◽  
Victor Solis-Mezarino ◽  
Moritz Völker-Albert ◽  
...  

AbstractAlteration of epigenetic modifications plays an important role in human cancer. Notably, the dysregulation of histone post-translational modifications (PTMs) has been associated with several cancers including colorectal cancer (CRC). However, the signature of histone PTMs on circulating nucleosomes is still not well described. We have developed a fast and robust enrichment method to isolate circulating nucleosomes from plasma for further downstream proteomic analysis. This method enabled us to quantify the global alterations of histone PTMs from 9 CRC patients and 9 healthy donors. Among 54 histone proteoforms identified and quantified in plasma samples, 13 histone PTMs were distinctive in CRC. Notably, methylation of histone H3K9 and H3K27, acetylation of histone H3 and citrullination of histone H2A1R3 were upregulated in plasma of CRC patients. A comparative analysis of paired samples identified 3 common histone PTMs in plasma and tumor tissue including the methylation and acetylation state of lysine 27 of histone H3. Moreover, we highlight for the first time that histone H2A1R3 citrulline is a modification upregulated in CRC patients. This new method presented herein allows the detection and quantification of histone variants and histone PTMs from circulating nucleosomes in plasma samples and could be used for biomarker discovery of cancer.


2021 ◽  
Vol 478 (3) ◽  
pp. 511-532
Author(s):  
Bethany C. Taylor ◽  
Nicolas L. Young

Histones are essential proteins that package the eukaryotic genome into its physiological state of nucleosomes, chromatin, and chromosomes. Post-translational modifications (PTMs) of histones are crucial to both the dynamic and persistent regulation of the genome. Histone PTMs store and convey complex signals about the state of the genome. This is often achieved by multiple variable PTM sites, occupied or unoccupied, on the same histone molecule or nucleosome functioning in concert. These mechanisms are supported by the structures of ‘readers’ that transduce the signal from the presence or absence of PTMs in specific cellular contexts. We provide background on PTMs and their complexes, review the known combinatorial function of PTMs, and assess the value and limitations of common approaches to measure combinatorial PTMs. This review serves as both a reference and a path forward to investigate combinatorial PTM functions, discover new synergies, and gather additional evidence supporting that combinations of histone PTMs are the central currency of chromatin-mediated regulation of the genome.


Author(s):  
Dipankar Ranjan Baisya ◽  
Stefano Lonardi

Abstract Motivation Histone post-translational modifications (PTMs) are involved in a variety of essential regulatory processes in the cell, including transcription control. Recent studies have shown that histone PTMs can be accurately predicted from the knowledge of transcription factor binding or DNase hypersensitivity data. Similarly, it has been shown that one can predict PTMs from the underlying DNA primary sequence. Results In this study, we introduce a deep learning architecture called DeepPTM for predicting histone PTMs from transcription factor binding data and the primary DNA sequence. Extensive experimental results show that our deep learning model outperforms the prediction accuracy of the model proposed in Benveniste et al. (PNAS 2014) and DeepHistone (BMC Genomics 2019). The competitive advantage of our framework lies in the synergistic use of deep learning combined with an effective pre-processing step. Our classification framework has also enabled the discovery that the knowledge of a small subset of transcription factors (which are histone-PTM and cell-type specific) can provide almost the same prediction accuracy that can be obtained using all the transcription factors data. Availability https://github.com/dDipankar/DeepPTM


Viruses ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1409
Author(s):  
Svetlana Rezinciuc ◽  
Zhixin Tian ◽  
Si Wu ◽  
Shawna Hengel ◽  
Ljiljana Pasa-Tolic ◽  
...  

T cell function is determined by transcriptional networks that are regulated by epigenetic programming via posttranslational modifications (PTMs) to histone proteins and DNA. Bottom-up mass spectrometry (MS) can identify histone PTMs, whereas intact protein analysis by MS can detect species missed by bottom-up approaches. We used a novel approach of online two-dimensional liquid chromatography-tandem MS with high-resolution reversed-phase liquid chromatography (RPLC), alternating electron transfer dissociation (ETD) and collision-induced dissociation (CID) on precursor ions to maximize fragmentation of uniquely modified species. The first online RPLC separation sorted histone families, then RPLC or weak cation exchange hydrophilic interaction liquid chromatography (WCX-HILIC) separated species heavily clad in PTMs. Tentative identifications were assigned by matching proteoform masses to predicted theoretical masses that were verified with tandem MS. We used this innovative approach for histone-intact protein PTM mapping (HiPTMap) to identify and quantify proteoforms purified from CD8 T cells after in vivo influenza infection. Activation significantly altered PTMs following influenza infection, histone maps changed as T cells migrated to the site of infection, and T cells responding to secondary infections had significantly more transcription enhancing modifications. Thus, HiPTMap identified and quantified proteoforms and determined changes in CD8 T cell histone PTMs over the course of infection.


Sign in / Sign up

Export Citation Format

Share Document