A pH dependence study of CdTe quantum dots fluorescence quantum yields using eclipsing thermal lens spectroscopy

2016 ◽  
Vol 174 ◽  
pp. 17-21 ◽  
Author(s):  
C. Estupiñán-López ◽  
C. Tolentino Dominguez ◽  
P.E. Cabral Filho ◽  
B.S. Santos ◽  
A. Fontes ◽  
...  
NANO ◽  
2016 ◽  
Vol 11 (07) ◽  
pp. 1650073 ◽  
Author(s):  
Lu Liu ◽  
Hu Xu ◽  
Bing Shen ◽  
Xinhua Zhong

Pentaerythritol tetrakis 3-mercaptopropionate (PTMP) grafted poly(acryl acid) (PAA) ionic hydrophilic oligomer PAA-PTMP (PP) and dihydrolipoic acid (DHLA) grafted methoxypoly(ethylene glycol) (mPEG) nonionic hydrophilic oligomer mPEG-DHLA (PD) have been designed, synthesized and used as co-capping ligands in water-solubilization of hydrophobic quantum dots (QDs) via ligand exchange. The obtained oligomers with multi-thiol groups could bind strongly to the surface atoms of QDs. Meanwhile, the carboxyl groups (from PP) and mPEG segment (from PD) can render QDs water-soluble, and the free carboxylic groups can possibly be used for the further bioconjugation. The resulting water-soluble QDs have been characterized by ultraviolet-visible (UV-Vis), fluorescence, Fourier transform infrared (FTIR) spectroscopy as well as transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques. The water-soluble QDs have relatively small hydrodynamic size (10[Formula: see text]12 nm), and importantly, retain high fluorescence quantum yields (up to 45%) compared with that of the originally hydrophobic QDs (49%). In addition, they have tunable surface charges and show excellent colloidal stability over a relatively broad pH range ([Formula: see text]), in high salt concentration, and even after thermal treatment at 100[Formula: see text]C. These results indicate that the water-soluble QDs coated by PP and PD oligomers have potential applications in cellular imaging and biosensor.


2014 ◽  
Vol 79 (2) ◽  
pp. 185-198 ◽  
Author(s):  
Bratislav Marinkovic ◽  
Ambra Delneri ◽  
Maja Rabasovic ◽  
Mira Terzic ◽  
Mladen Franko ◽  
...  

The application of a high-sensitivity method of time resolved laser induced fluorescence (TR-LIF) and Flow-injection system by thermal lens spectrometry (FIA-TLS) for the analysis of Cr-Phycoerythrin (Cr-PE) isolated from a proprietary cyanobacterium is presented. In the excitation wavelength range (340-470 nm) fluorescent spectra exhibit a pronounced maximum at 575 nm. Another maximum, at about 600 nm can be also observed. The obtained results are used to verify the technical parameters of the used thermal lens technique, which is complementary to spectrofluorimetry and subject to lower sensitivity in case of high fluorescence quantum yields and photolability of measured compounds.


2018 ◽  
Vol 42 (12) ◽  
pp. 9496-9500 ◽  
Author(s):  
Min Zhang ◽  
Zhi-Quan Tian ◽  
Dong-Liang Zhu ◽  
He He ◽  
San-Wei Guo ◽  
...  

After replacing oleylamine with (3-aminopropyl)triethoxysilane, the stability of the as-prepared CsPbBr3 QDs was significantly improved.


RSC Advances ◽  
2016 ◽  
Vol 6 (44) ◽  
pp. 38183-38186 ◽  
Author(s):  
Li-Juan Shi ◽  
Chun-Nan Zhu ◽  
He He ◽  
Dong-Liang Zhu ◽  
Zhi-Ling Zhang ◽  
...  

Near-infrared Ag2Se QDs with distinct absorption features ranging between 830–954 nm and fluorescence quantum yields up to 23.4% were controllably synthesized, and the molar extinction coefficients of the Ag2Se QDs were determined.


2014 ◽  
Vol 887-888 ◽  
pp. 156-160 ◽  
Author(s):  
Ting Han ◽  
Xue Jiao Zhou ◽  
Xiao Chen Wu

It is a facile and efficient way to produce grapheme quantum dots (GQDs) through photo-Fenton reaction. However, the fluorescence of the as-generated GQDs is weak. Here, bright yellow-green fluorescent graphene quantum dots (GQDs) were prepared by post-oxidation of the GQDs with H2O2. The fluorescence quantum yields of the post-oxidized GQDs (O-GQDs) increased from 0.08% to 3.3% and the maximum emission wavelength shifted from 450 to 510 nm. The O-GQDs exhibit excitation-independent and pH-dependent photoluminescence behaviors. The increase of the photoluminescence intensity is attributed to the more carbonyl and carboxyl groups after the post-oxidation. The post-oxidation treatment offers a simple pathway to enhance the fluorescence of GQDs.


Author(s):  
Carlos Estupiñán-López ◽  
Christian Tolentino Dominguez ◽  
Paulo E. Cabral Filho ◽  
Adriana Fontes ◽  
Renato E. de Araujo

1996 ◽  
Vol 50 (12) ◽  
pp. 1505-1511 ◽  
Author(s):  
J. Georges ◽  
N. Arnaud ◽  
L. Parise

The high incident irradiances available with pulsed lasers can lead to a significant depletion of the ground-state population of the chromophore and to optical saturation effects. As a result, the optical absorption coefficient decreases as a function of the excitation energy and, because the amount of energy released by radiative and nonradiative relaxation processes depends on the amount of energy absorbed, nonlinear energy-dependent signals are obtained. Therefore, large errors can be introduced when fluorescence and photothermal data are used to determine fluorescence quantum yields. This work provides experimental results describing the effects of optical saturation on fluorescence and thermal lens measurements for rhodamine 6G in various media and over a wide energy range. It is shown that, when optical saturation is avoided, the photothermal method gives accurate absolute values of Φf ranging from 0.93 to 0.95, depending on the solvent. On the contrary, fluorescence measurements seem to be sensitive to additional experimental artifacts that are more difficult to characterize and to eliminate. Index Headings: Optical saturation; Thermal lens spectrometry; Fluorescence; Rhodamine 6G; Fluorescence quantum yield.


2019 ◽  
Author(s):  
Aurelio A. Rossinelli ◽  
Henar Rojo ◽  
Aniket S. Mule ◽  
Marianne Aellen ◽  
Ario Cocina ◽  
...  

<div>Colloidal semiconductor nanoplatelets exhibit exceptionally narrow photoluminescence spectra. This occurs because samples can be synthesized in which all nanoplatelets share the same atomic-scale thickness. As this dimension sets the emission wavelength, inhomogeneous linewidth broadening due to size variation, which is always present in samples of quasi-spherical nanocrystals (quantum dots), is essentially eliminated. Nanoplatelets thus offer improved, spectrally pure emitters for various applications. Unfortunately, due to their non-equilibrium shape, nanoplatelets also suffer from low photo-, chemical, and thermal stability, which limits their use. Moreover, their poor stability hampers the development of efficient synthesis protocols for adding high-quality protective inorganic shells, which are well known to improve the performance of quantum dots. <br></div><div>Herein, we report a general synthesis approach to highly emissive and stable core/shell nanoplatelets with various shell compositions, including CdSe/ZnS, CdSe/CdS/ZnS, CdSe/Cd<sub>x</sub>Zn<sub>1–x</sub>S, and CdSe/ZnSe. Motivated by previous work on quantum dots, we find that slow, high-temperature growth of shells containing a compositional gradient reduces strain-induced crystal defects and minimizes the emission linewidth while maintaining good surface passivation and nanocrystal uniformity. Indeed, our best core/shell nanoplatelets (CdSe/Cd<sub>x</sub>Zn<sub>1–x</sub>S) show photoluminescence quantum yields of 90% with linewidths as low as 56 meV (19.5 nm at 655 nm). To confirm the high quality of our different core/shell nanoplatelets for a specific application, we demonstrate their use as gain media in low-threshold ring lasers. More generally, the ability of our synthesis protocol to engineer high-quality shells can help further improve nanoplatelets for optoelectronic devices.</div>


Sign in / Sign up

Export Citation Format

Share Document