scholarly journals Phylogenetic Analysis and Structural Modeling of SARS-CoV-2 Spike Protein Reveals an Evolutionary Distinct and Proteolytically Sensitive Activation Loop

2020 ◽  
Vol 432 (10) ◽  
pp. 3309-3325 ◽  
Author(s):  
Javier A. Jaimes ◽  
Nicole M. André ◽  
Joshua S. Chappie ◽  
Jean K. Millet ◽  
Gary R. Whittaker
Author(s):  
Javier A. Jaimes ◽  
Nicole M. André ◽  
Jean K. Millet ◽  
Gary R. Whittaker

AbstractThe 2019 novel coronavirus (2019-nCoV) is currently causing a widespread outbreak centered on Hubei province, China and is a major public health concern. Taxonomically 2019-nCoV is closely related to SARS-CoV and SARS-related bat coronaviruses, and it appears to share a common receptor with SARS-CoV (ACE-2). Here, we perform structural modeling of the 2019-nCoV spike glycoprotein. Our data provide support for the similar receptor utilization between 2019-nCoV and SARS-CoV, despite a relatively low amino acid similarity in the receptor binding module. Compared to SARS-CoV, we identify an extended structural loop containing basic amino acids at the interface of the receptor binding (S1) and fusion (S2) domains, which we predict to be proteolytically-sensitive. We suggest this loop confers fusion activation and entry properties more in line with MERS-CoV and other coronaviruses, and that the presence of this structural loop in 2019-nCoV may affect virus stability and transmission.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1803
Author(s):  
Jitendra Singh ◽  
Anvita Gupta Malhotra ◽  
Debasis Biswas ◽  
Prem Shankar ◽  
Leena Lokhande ◽  
...  

India experienced a tragic second wave after the end of March 2021, which was far more massive than the first wave and was driven by the emergence of the novel delta variant (B.1.617.2) of the SARS-CoV-2 virus. In this study, we explored the local and national landscape of the viral variants in the period immediately preceding the second wave to gain insight into the mechanism of emergence of the delta variant and thus improve our understanding of the causation of the second wave. We randomly selected 20 SARS-CoV-2 positive samples diagnosed in our lab between 3 February and 8 March 2021 and subjected them to whole genome sequencing. Nine of the 20 sequenced genomes were classified as kappa variant (B.1.617.1). The phylogenetic analysis of pan-India SARS-CoV-2 genome sequences also suggested the gradual replacement of the α variant with the kappa variant during this period. This relative consolidation of the kappa variant was significant, since it shared 3 of the 4 signature mutations (L452R, E484Q and P681R) observed in the spike protein of delta variant and thus was likely to be the precursor in its evolution. This study demonstrates the predominance of the kappa variant in the period immediately prior to the second wave and underscores its role as the “bridging variant” between the α and delta variants that drove the first and second waves of COVID-19 in India, respectively.


2020 ◽  
Author(s):  
Seong-Tshool Hong ◽  
Md. Mehedi Hassan ◽  
Shirina Sharmin ◽  
Jinny Hong ◽  
Hoi-Seon Lee ◽  
...  

Abstract SARS-CoV-2 has been spreading remarkedly fast around the world since its emergence while the origin of the virus remains ambiguous. Here, we constructed all of the original prototype genome sequences of SARS-CoV-2 by selecting the common nucleotide among the different virus strains with species. Phylogenetic analysis on the prototype sequences showed that SARS-CoV-2 was a direct descendant of Bat-CoV and was closely related to Pan-CoV, Bat-SL-CoV, and SARS-CoV. The pairwise comparison of SARS-CoV-2 with Bat-CoV showed an unusual replacement of the motif consisting of 7 amino acids within the spike protein of SARS-CoV-2. Database searches showed that the motif originated from a surface protein of Plasmodium malariae, suggesting that the SARS-CoV-2 was emerged after acquiring the motif of the malaria surface protein.


2011 ◽  
Vol 11 (1) ◽  
pp. 259 ◽  
Author(s):  
Daniela A Ribeiro ◽  
Luiz EV Del Bem ◽  
Renato Vicentini ◽  
Lúcio FC Ferraz ◽  
Mario T Murakami ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Gunadi ◽  
Hendra Wibawa ◽  
Mohamad Saifudin Hakim ◽  
Marcellus ◽  
Ika Trisnawati ◽  
...  

Abstract Background Transmission within families and multiple spike protein mutations have been associated with the rapid transmission of SARS-CoV-2. We aimed to: (1) describe full genome characterization of SARS-CoV-2 and correlate the sequences with epidemiological data within family clusters, and (2) conduct phylogenetic analysis of all samples from Yogyakarta and Central Java, Indonesia and other countries. Methods The study involved 17 patients with COVID-19, including two family clusters. We determined the full-genome sequences of SARS-CoV-2 using the Illumina MiSeq next-generation sequencer. Phylogenetic analysis was performed using a dataset of 142 full-genomes of SARS-CoV-2 from different regions. Results Ninety-four SNPs were detected throughout the open reading frame (ORF) of SARS-CoV-2 samples with 58% (54/94) of the nucleic acid changes resulting in amino acid mutations. About 94% (16/17) of the virus samples showed D614G on spike protein and 56% of these (9/16) showed other various amino acid mutations on this protein, including L5F, V83L, V213A, W258R, Q677H, and N811I. The virus samples from family cluster-1 (n = 3) belong to the same clade GH, in which two were collected from deceased patients, and the other from the survived patient. All samples from this family cluster revealed a combination of spike protein mutations of D614G and V213A. Virus samples from family cluster-2 (n = 3) also belonged to the clade GH and showed other spike protein mutations of L5F alongside the D614G mutation. Conclusions Our study is the first comprehensive report associating the full-genome sequences of SARS-CoV-2 with the epidemiological data within family clusters. Phylogenetic analysis revealed that the three viruses from family cluster-1 formed a monophyletic group, whereas viruses from family cluster-2 formed a polyphyletic group indicating there is the possibility of different sources of infection. This study highlights how the same spike protein mutations among members of the same family might show different disease outcomes.


2021 ◽  
Author(s):  
Lishuang Shen ◽  
Jennifer Dien Bard ◽  
Timothy J Triche ◽  
Alexander R Judkins ◽  
Jaclyn A Biegel ◽  
...  

The SARS-CoV-2 B.1.1.7 lineage is highly infectious and as of April 2021 accounted for 92% of COVID-19 cases in Europe and 59% of COVID-19 cases in the U.S. It is defined by the N501Y mutation in the receptor binding domain (RBD) of the Spike (S) protein, and a few other mutations. These include two mutations in the N terminal domain (NTD) of the S protein, HV69-70del and Y144del (also known as Y145del due to the presence of tyrosine at both positions). We recently identified several emerging SARS-CoV-2 variants of concerns, characterized by Membrane (M) protein mutations, including I82T and V70L. We now identify a sub-lineage of B.1.1.7 that emerged through sequential acquisitions of M:V70L in November 2020 followed by a novel S:D178H mutation first observed in early February 2021. The percentage of B.1.1.7 isolates in the U.S. that belong to this sub-lineage increased from 0.15% in February 2021 to 1.8% in April 2021. To date this sub-lineage appears to be U.S.-specific with reported cases in 31 states, including Hawaii. As of April 2021 it constituted 36.8% of all B.1.1.7 isolates in Washington. Phylogenetic analysis and transmission inference with Nextstrain suggests this sub-lineage likely originated in either California or Washington. Structural analysis revealed that the S:D178H mutation is in the NTD of the S protein and close to two other signature mutations of B.1.1.7, HV69-70del and Y144del. It is surface exposed and may alter NTD tertiary configuration or accessibility, and thus has the potential to affect neutralization by NTD directed antibodies.


2021 ◽  
Vol 9 ◽  
Author(s):  
Cíntia Bittar ◽  
Fábio Sossai Possebon ◽  
Leila Sabrina Ullmann ◽  
Dayla Bott Geraldini ◽  
Vivaldo G. da Costa ◽  
...  

The emergence of several SARS-CoV-2 lineages presenting adaptive mutations is a matter of concern worldwide due to their potential ability to increase transmission and/or evade the immune response. While performing epidemiological and genomic surveillance of SARS-CoV-2 in samples from Porto Ferreira—São Paulo—Brazil, we identified sequences classified by pangolin as B.1.1.28 harboring Spike L452R mutation, in the RBD region. Phylogenetic analysis revealed that these sequences grouped into a monophyletic branch, with others from Brazil, mainly from the state of São Paulo. The sequences had a set of 15 clade defining amino acid mutations, of which six were in the Spike protein. A new lineage was proposed to Pango and it was accepted and designated P.4. In samples from the city of Porto Ferreira, P.4 lineage has been increasing in frequency since it was first detected in March 2021, corresponding to 34.7% of the samples sequenced in June, the second in prevalence after P.1. Also, it is circulating in 30 cities from the state of São Paulo, and it was also detected in one sample from the state of Sergipe and two from the state of Rio de Janeiro. Further studies are needed to understand whether P.4 should be considered a new threat.


Sign in / Sign up

Export Citation Format

Share Document