scholarly journals Spurious phase correction in rapid metabolic imaging

2021 ◽  
Vol 332 ◽  
pp. 107065
Author(s):  
Nour El Sabbagh ◽  
Carine Chassain ◽  
Hélène Ratiney ◽  
Guilhem Pagés ◽  
Jean-Marie Bonny
2009 ◽  
Vol 5 (1) ◽  
pp. 15
Author(s):  
Nagara Tamaki ◽  
Yuji Kuge ◽  
Keiichiro Yoshinaga ◽  
◽  
◽  
...  

Glucose and free fatty acids are a major energy source in the myocardium. Metabolic imaging with single photon emission tomography (SPECT) and positron emission tomography (PET) have been widely used for the evaluation of the pathophysiology of coronary artery disease (CAD) and heart failure. 18F fluorodeoxyglucose (FDG) is a glucose analogue that is used to measure myocardial glucose utilisation. The myocardial uptake of a modified branched fatty acid, 15-(p-[iodine-123] iodophenyl)-3-(R,S) methylpentadecanoic acid (BMIPP), reflects the activation of fatty-acid metabolism by co-enzyme A (CoA) and indirectly reflects cellular adenosine triphosphate (ATP) production. The turnover rate of the tricarboxylic acid (TCA) cycle reflects the rate of overall myocardial oxidative metabolism. 11C acetate is readily metabolised to CO2 almost exclusively through the TCA cycle. These three major agents have been most commonly used for probing myocardial energy metabolism in vivo. Such metabolic imaging has been used for assessing myocardial viability on the basis of persistent glucose utilisation in ischaemic but viable myocardium. BMIPP and FDG have been identified for locating a recent history of myocardial ischaemia. Furthermore, metabolic imaging is promising for the assessment of the pathophysiology of heart failure and the treatment effect of various drugs, as well as mechanical treatments. In this article we will provide an overview of the application of myocardial metabolic imaging in a clinical setting.


2014 ◽  
Vol 27 (7) ◽  
pp. 663-668
Author(s):  
Chao Zhu ◽  
Changhua Lu ◽  
Wenqing Liu ◽  
Yujun Zhang ◽  
Xiaoting Chen ◽  
...  

2019 ◽  
Vol 13 (6) ◽  
pp. 624-632 ◽  
Author(s):  
Ning Fu ◽  
Siyi Jiang ◽  
Libao Deng ◽  
Liyan Qiao

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Indrawati Hadi ◽  
Daniel Reitz ◽  
Raphael Bodensohn ◽  
Olarn Roengvoraphoj ◽  
Stefanie Lietke ◽  
...  

Abstract Purpose Frequency and risk profile of radiation necrosis (RN) in patients with glioma undergoing either upfront stereotactic brachytherapy (SBT) and additional salvage external beam radiotherapy (EBRT) after tumor recurrence or vice versa remains unknown. Methods Patients with glioma treated with low-activity temporary iodine-125 SBT at the University of Munich between 1999 and 2016 who had either additional upfront or salvage EBRT were included. Biologically effective doses (BED) were calculated. RN was diagnosed using stereotactic biopsy and/or metabolic imaging. The rate of RN was estimated with the Kaplan Meier method. Risk factors were obtained from logistic regression models. Results Eighty-six patients (49 male, 37 female, median age 47 years) were included. 38 patients suffered from low-grade and 48 from high-grade glioma. Median follow-up was 15 months after second treatment. Fifty-eight patients received upfront EBRT (median total dose: 60 Gy), and 28 upfront SBT (median reference dose: 54 Gy, median dose rate: 10.0 cGy/h). Median time interval between treatments was 19 months. RN was diagnosed in 8/75 patients. The 1- and 2-year risk of RN was 5.1% and 11.7%, respectively. Tumor volume and irradiation time of SBT, number of implanted seeds, and salvage EBRT were risk factors for RN. Neither of the BED values nor the time interval between both treatments gained prognostic influence. Conclusion The combination of upfront EBRT and salvage SBT or vice versa is feasible for glioma patients. The risk of RN is mainly determined by the treatment volume but not by the interval between therapies.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 504
Author(s):  
Seunggwi Park ◽  
Hashizume Rintaro ◽  
Seul Kee Kim ◽  
Ilwoo Park

The development of hyperpolarized carbon-13 (13C) metabolic MRI has enabled the sensitive and noninvasive assessment of real-time in vivo metabolism in tumors. Although several studies have explored the feasibility of using hyperpolarized 13C metabolic imaging for neuro-oncology applications, most of these studies utilized high-grade enhancing tumors, and little is known about hyperpolarized 13C metabolic features of a non-enhancing tumor. In this study, 13C MR spectroscopic imaging with hyperpolarized [1-13C]pyruvate was applied for the differential characterization of metabolic profiles between enhancing and non-enhancing gliomas using rodent models of glioblastoma and a diffuse midline glioma. Distinct metabolic profiles were found between the enhancing and non-enhancing tumors, as well as their contralateral normal-appearing brain tissues. The preliminary results from this study suggest that the characterization of metabolic patterns from hyperpolarized 13C imaging between non-enhancing and enhancing tumors may be beneficial not only for understanding distinct metabolic features between the two lesions, but also for providing a basis for understanding 13C metabolic processes in ongoing clinical trials with neuro-oncology patients using this technology.


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Nicolo’ Bruschi ◽  
Giacomo Boffa ◽  
Matilde Inglese

Abstract Magnetic resonance imaging (MRI) is essential for the early diagnosis of multiple sclerosis (MS), for investigating the disease pathophysiology, and for discriminating MS from other neurological diseases. Ultra-high-field strength (7-T) MRI provides a new tool for studying MS and other demyelinating diseases both in research and in clinical settings. We present an overview of 7-T MRI application in MS focusing on increased sensitivity and specificity for lesion detection and characterisation in the brain and spinal cord, central vein sign identification, and leptomeningeal enhancement detection. We also discuss the role of 7-T MRI in improving our understanding of MS pathophysiology with the aid of metabolic imaging. In addition, we present 7-T MRI applications in other demyelinating diseases. 7-T MRI allows better detection of the anatomical, pathological, and functional features of MS, thus improving our understanding of MS pathology in vivo. 7-T MRI also represents a potential tool for earlier and more accurate diagnosis.


2021 ◽  
Vol 3 (Supplement_1) ◽  
pp. i1-i1
Author(s):  
Gilbert Hangel ◽  
Cornelius Cadrien ◽  
Philipp Lazen ◽  
Sukrit Sharma ◽  
Julia Furtner ◽  
...  

Abstract OBJECTIVES Neurosurgical resection in gliomas depends on the precise preoperative definition of the tumor and its margins to realize a safe maximum resection that translates into a better patient outcome. New metabolic imaging techniques could improve this delineation as well as designate targets for biopsies. We validated the performance of our fast high-resolution whole-brain 3D-magnetic resonance spectroscopic imaging (MRSI) method at 7T in high-grade gliomas (HGGs) as first step to this regard. METHODS We measured 23 patients with HGGs at 7T with MRSI covering the whole cerebrum with 3.4mm isotropic resolution in 15 min. Quantification used a basis-set of 17 neurochemical components. They were evaluated for their reliability/quality and compared to neuroradiologically segmented tumor regions-of-interest (necrosis, contrast-enhanced, non-contrast-enhanced+edema, peritumoral) and histopathology (e.g., grade, IDH-status). RESULTS We found 18/23 measurements to be usable and ten neurochemicals quantified with acceptable quality. The most common denominators were increases of glutamine, glycine, and total choline as well as decreases of N-acetyl-aspartate and total creatine over most tumor regions. Other metabolites like taurine and serine showed mixed behavior. We further found that heterogeneity in the metabolic images often continued into the peritumoral region. While 2-hydroxy-glutarate could not be satisfyingly quantified, we found a tendency for a decrease of glutamate in IDH1-mutant HGGs. DISCUSSION Our findings corresponded well to clinical tumor segmentation but were more heterogeneous and often extended into the peritumoral region. Our results corresponded to previous knowledge, but with previously not feasible resolution. Apart from glycine/glutamine and their role in glioma progression, more research on the connection of glutamate and others to specific mutations is necessary. The addition of low-grade gliomas and statistical ROI analysis in a larger cohort will be the next important steps to define the benefits of our 7T MRSI approach for the definition of spatial metabolic tumor profiles.


Sign in / Sign up

Export Citation Format

Share Document