scholarly journals Microstructural and shear strength properties of GNSs-reinforced Sn-1.0Ag-0.5Cu (SAC105) composite solder interconnects on plain Cu and ENIAg surface finish

Author(s):  
K. Vidyatharran ◽  
M.A.Azmah Hanim ◽  
T.T. Dele-Afolabi ◽  
K.A. Matori ◽  
O.Saliza Azlina
2020 ◽  
Vol 31 (11) ◽  
pp. 8316-8328
Author(s):  
M. A. Azmah Hanim ◽  
N. Muhamad Kamil ◽  
Chuan Khang Wei ◽  
T. T. Dele-Afolabi ◽  
O. Saliza Azlina

Alloy Digest ◽  
2020 ◽  
Vol 69 (7) ◽  

Abstract Dura-Bar 80-55-06 is a ferritic-pearlitic ductile iron that is used for continuous cast products. It offers higher strength and wear resistance when compared to Dura-Bar 65-45-12, while still possessing good machinability and surface finish. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength. It also includes information on heat treating and machining. Filing Code: CI-71. Producer or source: Charter Dura-Bar, Inc.


2021 ◽  
Vol 13 (15) ◽  
pp. 8164
Author(s):  
Brian E. Bautista ◽  
Lessandro E. O. Garciano ◽  
Luis F. Lopez

There are limited published studies related to the mechanical properties of bamboo species in the Philippines. In this study, the shear strength properties of some economically viable bamboo species in the Philippines were properly characterized based on 220 shear test results. The rationales of selecting this mechanical property are the following: (1) Shear strength, parallel to the fiber, has the highest variability among the mechanical properties; and (2) Shear is one of the governing forces on joint connections, and such connections are the points of failure on bamboo structures when subjected to extreme loading conditions. ISO 22157-1 (2017) test protocol for shear was used for all tests. The results showed that Bambusa blumeana has the highest average shear strength, followed by Gigantochloa apus, Dendrocalamus asper, Bambusa philippinensis, and Bambusa vulgaris. However, comparative analysis, using One-way ANOVA, showed that shear strength values among these bamboo species have significant differences statistically. A linear regression model is also established to estimate the shear strength of bamboo from the physical properties. Characteristic shear strength is also determined using ISO 12122-1 (2014) for future design reference.


2020 ◽  
Vol 5 (1) ◽  
pp. 711-725
Author(s):  
Sutrisno ◽  
Eka Mulya Alamsyah ◽  
Ginanjar Gumilar ◽  
Takashi Tanaka ◽  
Masaaki Yamada

AbstractThe properties of the laminated veneer lumber (LVL) composed of the boiled veneer of Rubberwood (Hevea brasiliensis) using polyvinyl acetate (PVAc) adhesives in various cold-pressing time and various conditioned time with loaded and unloaded were studied. Five-ply LVL was produced by boiling veneer at 100°C for 90 min as pretreatment and cold-pressing time at 12 kgf cm−2 for 1.5, 6, 18, and 24 h then conditioned at 20°C and 65% relative humidity (RH) with loaded (12 kgf cm−2) and unloaded for 7 days as physical treatment. Especially for the delamination test, the specimens were immersed at 70 ± 3°C for 2 h and dried in the oven at 60 ± 3°C for 24 h; then, the specimens were solidified at room temperature (20°C and 65% RH) with loaded (12 kgf cm−2) and unloaded for 7, 10, 12, and 14 days. To determine the performance of LVL, the density, moisture content (MC), delamination, modulus of elasticity (MOE), modulus of rupture (MOR), horizontal shear strength, and formaldehyde emission tests were conducted according to the Japanese Agricultural Standard (JAS 2008) for structural LVL. The MOE and MOR values were significantly influenced by the physical treatment, however, neither to horizontal shear strength nor to formaldehyde emission. The best performance of LVL has resulted from unloaded LVL with cold-pressed time for 18 h; the MOE and MOR values were 9,345.05 ± 141.61 N mm−2 and 80.67 ± 1.77 N mm−2, respectively. The best value of the horizontal shear strength was obtained from the LVL with 18 h cold-pressing time and conditioned with loaded (13.10 ± 1.47 N mm−2) and unloaded (12.23 ± 1.36 N mm−2). The percentage of delamination values decreased with an increase in the cold-pressing time and conditioning time. The lowest value of delamination (19.06%) was obtained from the LVL with 24 h cold-pressing time and conditioned with loaded for 14 days. Except the delamination test, all other properties fulfilled the JAS.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 776
Author(s):  
Nur Syahirah Mohamad Zaimi ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Andrei Victor Sandu ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Norainiza Saud ◽  
...  

This paper elucidates the effect of isothermal ageing at temperature of 85 °C, 125 °C and 150 °C for 100, 500 and 1000 h on Sn-3.0Ag-0.5Cu (SAC305) lead-free solder with the addition of 1 wt% kaolin geopolymer ceramic (KGC) reinforcement particles. SAC305-KGC composite solders were fabricated through powder metallurgy using a hybrid microwave sintering method and reflowed on copper substrate printed circuit board with an organic solderability preservative surface finish. The results revealed that, the addition of KGC was beneficial in improving the total thickness of interfacial intermetallic compound (IMC) layer. At higher isothermal ageing of 150 °C and 1000 h, the IMC layer in SAC305-KGC composite solder was towards a planar-type morphology. Moreover, the growth of total interfacial IMC layer and Cu3Sn layer during isothermal ageing was found to be controlled by bulk diffusion and grain-boundary process, respectively. The activation energy possessed by SAC305-KGC composite solder for total interfacial IMC layer and Cu3Sn IMC was 74 kJ/mol and 104 kJ/mol, respectively. Based on a lap shear test, the shear strength of SAC305-KGC composite solder exhibited higher shear strength than non-reinforced SAC305 solder. Meanwhile, the solder joints failure mode after shear testing was a combination of brittle and ductile modes at higher ageing temperature and time for SAC305-KGC composite solder.


2015 ◽  
Vol 52 (10) ◽  
pp. 1490-1495 ◽  
Author(s):  
Naj Aziz ◽  
Ali Mirzaghorbanali ◽  
Jan Nemcik ◽  
Kay Heemann ◽  
Stefan Mayer

An experimental investigation into the performance of two 22 mm diameter, 60 t tensile strength capacity Hilti cable bolts in shear was conducted using the double-shear testing apparatus at the laboratory of the School of Civil, Mining and Environmental Engineering, Faculty of Engineering and Information Sciences, University of Wollongong. The tested cable bolts were (i) Hilti 19 wire HTT-UXG plain strand and (ii) Hilti 19 wire HTT-IXG spirally profiled (smaller cross-sectional area than the plain one) cable bolt, with indentation only on the surface of the outer strands. These cable bolts are of sealed wire construction type, consisting of an outer 5.5 mm diameter wire layer overlying the middle 3 mm diameter wire strands. Both layers are wrapped around a single solid 7 mm diameter strand wire core. The double-shearing test was carried out in 40 MPa concrete blocks, contained in concrete moulds. Cable bolts were encapsulated in concrete using Orica FB400 pumpable grout. Prior to encapsulation, each cable bolt was pre-tensioned initially to 50 kN axial force. A 500 t capacity servocontrolled compression testing machine was used for both tests, and during each test the vertical shear displacement was limited to 70 mm of travel. The rate of vertical shear displacement was maintained constant at 1 mm/min. The maximum shear load achieved for the plain strand cable was 1024 kN, while the spiral cable peak load was 904 kN, before the cable bolt wires began to individually snap, leading to the cable bolt break-up into two sections. It is apparent that spiral profiles of the outer wires weaken both the tensile and shearing strength. Finally, another set of tests was undertaken using the British Standard single-shear approach, producing lower shear strength values.


Géotechnique ◽  
1960 ◽  
Vol 10 (3) ◽  
pp. 101-109 ◽  
Author(s):  
Laurits Bjerrum ◽  
Tien-Hsing Wu

Sign in / Sign up

Export Citation Format

Share Document