Development of Ti-Al-Ta-Nb-(Re) near-α high temperature titanium alloy: microstructure, thermal stability and mechanical properties

Author(s):  
Juan Li ◽  
Yaqun Xu ◽  
Wenlong Xiao ◽  
Chaoli Ma ◽  
Xu Huang
2021 ◽  
Vol 1035 ◽  
pp. 89-95
Author(s):  
Chao Tan ◽  
Zi Yong Chen ◽  
Zhi Lei Xiang ◽  
Xiao Zhao Ma ◽  
Zi An Yang

A new type of Ti-Al-Sn-Zr-Mo-Si series high temperature titanium alloy was prepared by a water-cooled copper crucible vacuum induction melting method, and its phase transition point was determined by differential thermal analysis to be Tβ = 1017 °C. The influences of solution temperature on the microstructures and mechanical properties of the as-forged high temperature titanium alloy were studied. XRD results illustrated that the phase composition of the alloy after different heat treatments was mainly α phase and β phase. The microstructures showed that with the increase of the solution temperature, the content of the primary α phase gradually reduced, the β transformation structure increased by degrees, then, the number and size of secondary α phase increased obviously. The tensile results at room temperature (RT) illustrated that as the solution temperature increased, the strength of the alloy gradually increased, and the plasticity decreased slightly. The results of tensile test at 650 °C illustrated that the strength of the alloy enhanced with the increase of solution temperature, the plasticity decreased first and then increased, when the solution temperature increased to 1000 °C, the alloy had the best comprehensive mechanical properties, the tensile strength reached 714.01 MPa and the elongation was 8.48 %. Based on the room temperature and high temperature properties of the alloy, the best heat treatment process is finally determined as: 1000 °C/1 h/AC+650 °C/6 h/AC.


2021 ◽  
Vol 130 (13) ◽  
pp. 135104
Author(s):  
Juwei Wang ◽  
Haihua Chen ◽  
Zhengang Zhang ◽  
Bin Wang ◽  
Hongtao Ma ◽  
...  

2021 ◽  
Vol 1016 ◽  
pp. 906-910
Author(s):  
Xin Hua Min ◽  
Cheng Jin

In this paper,effect of the different forging processes on the microstructure and mechanical properties of the flat flat billets of TA15 titanium alloy was investigated.The flat billiets of 80 mm×150 mm×L sizes of TA15 titanium alloy are produced by four different forging processes.Then the different microstrure and properties of the flat billiets were obtained by heat treatment of 800 °C~850 °C×1 h~4h.The results show that, adopting the first forging temperature at T1 °C、slow cooling and the second forging temperature at T2°C 、quick cooling, the primary αphases content is just 10%, and there are lots of thin aciculate phases on the base. This microstructure has both high strength at room temperature and high temperature, while the properties between the cross and lengthwise directions are just the same. So the hot processing of the first forging temperature at T1 °C、slow cooling and the second forging temperature at T2°C 、quick cooling is choosed as the ideal processing for production of aircraft frame parts.


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1521 ◽  
Author(s):  
Xinxiang Yu ◽  
Zhiguo Zhao ◽  
Dandan Shi ◽  
Han Dai ◽  
Jie Sun ◽  
...  

The effects of the addition of 0.29 wt% Ce on the high-temperature mechanical properties of an Al–Cu–Li alloy were investigated. Ce addition contributes to T1 (Al2CuLi) phase coarsening inhibition and Ce-containing intermetallic refinement which greatly improved the thermal stability and high-temperature deformation uniformity of this alloy. On the one hand, small Ce in solid solution and segregation at phase interface can effectively prevent the diffusion and convergence of the main element Cu on T1 phase during thermal exposure. Therefore, the thermal stability of Ce-containing alloy substantiality improves during thermal exposure at the medium-high-temperature stage (170 °C to 270 °C). On the other hand, the increment of the tensile elongation in Ce-containing alloy is much greater than that in Ce-free alloy at high temperatures tensile test, because the refined Al8Cu4Ce intermetallic phase with high-temperature stability are mainly located in the fracture area with plastic fracture characteristics. This work provides a new method for enhancing high-temperature mechanical properties of Al–Cu–Li alloy which could be used as a construction material for high-temperature structural components.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1185
Author(s):  
Zhimin Wang ◽  
Lulu Sun ◽  
Wenchao Ke ◽  
Zhi Zeng ◽  
Wei Yao ◽  
...  

The joining of high-temperature titanium alloy is attracting much attention in aerospace applications. However, the defects are easily formed during laser welding of titanium alloys, which weakens the joint mechanical properties. In this work, laser oscillating welding was applied to join TC31 high-temperature titanium alloy. The weld appearance, microstructure and mechanical properties of the laser welds were investigated. The results show that sound joints were formed by using laser oscillating welding method, and a large amount of martensite was presented in the welds. High mechanical properties were achieved, which was approaching to (or even equaled) the strength of the base material. The joints exhibited a tensile strength of up to 1200 ± 10 MPa at room temperature and 638 ± 6 MPa at 923 K. Laser oscillating welding is beneficial to the repression of porosity for welding high-temperature titanium alloy.


2014 ◽  
Vol 783-786 ◽  
pp. 1692-1697
Author(s):  
Je Deok Kim ◽  
Mun Suk Jun

Nafion-azole (benzimidazole, 1,2,4-triazole, 1,2,3-triazole) composite membranes were prepared by room temperature and autoclave solution processing for high temperature (above 100 °C) PEMFC. Among the various Nafion – azole composite membranes, Nafion – 1,2,3-triazole membrane showed excellent flexibility, thermal stability, and homogeneous structure. Nafion – 1,2,4-triazole composite membrane had high thermal and mechanical properties, and also showed high proton conductivity of 0.02 S/cm at the temperature of 160 °C under dry (N2) condition.


Sign in / Sign up

Export Citation Format

Share Document