scholarly journals Waterless fracturing technologies for unconventional reservoirs-opportunities for liquid nitrogen

2016 ◽  
Vol 35 ◽  
pp. 160-174 ◽  
Author(s):  
Lei Wang ◽  
Bowen Yao ◽  
Minsu Cha ◽  
Naif B. Alqahtani ◽  
Taylor W. Patterson ◽  
...  
Author(s):  
Amna Ahmed ◽  
Teresa Zhu ◽  
Amna Majeed

In the last decade, hydraulic fracturing has rapidly gained popularity worldwide, emerging as the leading method of natural gas extraction in the United States. However, the practice remains controversial due to its contribution to greenhouse gas emissions and the contamination of freshwater used in fracturing fluids. Although waterless fracturing fluids have been developed, including those using N2, CO2, oil, and alcohol, their application has been limited largely due to reduced fracturing power. Recent research has demonstrated that cryogenic nitrogen may prove a viable alternative, if this issue is properly addressed. Addition of durable, lightweight proppants is one way to increase fracturing power. This study aims to investigate the effect of proppant addition on the fracturing capabilities of cryogenic nitrogen. Three ultra-lightweight proppants will be combined with liquid nitrogen and fracturing power will be measured using triaxial stress tests. This novel approach has not yet been explored and will open more avenues of research into sustainable and efficient fracturing using  cryogenic nitrogen.


Author(s):  
Zhaoyang Zhang ◽  
Jincheng Mao ◽  
Xiaojiang Yang ◽  
Jinzhou Zhao ◽  
Gregory S. Smith

2013 ◽  
Vol 40 (5) ◽  
pp. 646-650 ◽  
Author(s):  
Xiangqian HOU ◽  
Yongjun LU ◽  
Bo FANG ◽  
Xiaohui QIU ◽  
Weixiang CUI

2021 ◽  
Vol 73 (11) ◽  
pp. 57-57
Author(s):  
Reza Fassihi

As the discovery rate of new hydrocarbon resources decreases, the need for more-efficient enhanced-oil-recovery (EOR) processes increases. Unlike in the past, however, when the efficiency was defined in terms of maximizing the recovery factor (RF), the new interpretation of efficiency is based on optimizing the balance between RF and the reduction of carbon footprint. This is done through an integrated approach in which both surface and subsurface elements of the oil-production systems are used to determine energy efficiency and carbon footprint of a unit volume of oil produced by EOR methods. When choosing traditional EOR methods, new innovations may be needed to arrive at new injectant composition to reduce emissions or make the process more efficient. Adding chemicals to the injectant gas to improve the mobility ratio and increase the sweep efficiency is desirable. One example is the use of hydrogels. These are hydrophilic structures that swell when hydrated. Hydrogels are of interest in EOR because of their ability to respond to stimuli such as pH, temperature, light, and ionic strength. EOR methods that involve use of fresh water are also switching to alternative methods that reduce or remove its usage as part of water sustainability. The produced water could be treated properly to make it suitable for injection. Alternatively, polymers that are effective under high salinity or temperature could be used to deal with injecting saline water. For unconventional reservoirs, waterless fracturing techniques are progressing. Paper SPE 201609 discusses the application of a reversible hydrogel that can be added to the injected carbon dioxide (CO2) stream in order to make it a more-efficient injectant for EOR and, hence, create more opportunity for CO2 storage. Paper SPE 202809 deals with utility of new polymers that are suitable for injection into carbonate reservoirs under high-temperature and ultrahigh-salinity conditions. Finally, paper OTC 30437 discusses ways of mitigating safety risks associated with CO2 waterless fracturing in unconventional reservoirs as part of water sustainability as well as prevention of environmental pollution. Recommended additional reading at OnePetro: www.onepetro.org. SPE 200357 - Fundamental Investigation of Auto-Emulsification of Water in Crude Oil: An Interfacial Phenomenon and Its Pertinence for Low-Salinity EOR by Duboué Jennifer, TotalEnergies, et al. SPE 205118 - Experimental Design and Evaluation of Surfactant Polymer for a Heavy-Oil Field in South of Sultanate of Oman by Ali Reham Al-Jabri, Petroleum Development of Oman, et al. SPE 200256 - Chemical Enhanced Oil Recovery and the Dilemma of More and Cleaner Energy by Rouhi Farajzadeh, Delft University of Technology, et al.


Author(s):  
Claude Lechene

Electron probe microanalysis of frozen hydrated kidneysThe goal of the method is to measure on the same preparation the chemical elemental content of the renal luminal tubular fluid and of the surrounding renal tubular cells. The following method has been developed. Rat kidneys are quenched in solid nitrogen. They are trimmed under liquid nitrogen and mounted in a copper holder using a conductive medium. Under liquid nitrogen, a flat surface is exposed by sawing with a diamond saw blade at constant speed and constant pressure using a custom-built cryosaw. Transfer into the electron probe column (Cameca, MBX) is made using a simple transfer device maintaining the sample under liquid nitrogen in an interlock chamber mounted on the electron probe column. After the liquid nitrogen is evaporated by creating a vacuum, the sample is pushed into the special stage of the instrument. The sample is maintained at close to liquid nitrogen temperature by circulation of liquid nitrogen in the special stage.


Author(s):  
Louis T. Germinario

A liquid nitrogen stage has been developed for the JEOL JEM-100B electron microscope equipped with a scanning attachment. The design is a modification of the standard JEM-100B SEM specimen holder with specimen cooling to any temperatures In the range ~ 55°K to room temperature. Since the specimen plane is maintained at the ‘high resolution’ focal position of the objective lens and ‘bumping’ and thermal drift la minimized by supercooling the liquid nitrogen, the high resolution capability of the microscope is maintained (Fig.4).


Author(s):  
O. T. Inal ◽  
L. E. Murr

When sharp metal filaments of W, Fe, Nb or Ta are observed in the field-ion microscope (FIM), their appearance is differentiated primarily by variations in regional brightness. This regional brightness, particularly prominent at liquid nitrogen temperature has been attributed in the main to chemical specificity which manifests itself in a paricular array of surface-atom electron-orbital configurations.Recently, anomalous image brightness and streaks in both fcc and bee materials observed in the FIM have been shown to be the result of surface asperities and related topographic features which arise by the unsystematic etching of the emission-tip end forms.


Author(s):  
T. G. Naymik

Three techniques were incorporated for drying clay-rich specimens: air-drying, freeze-drying and critical point drying. In air-drying, the specimens were set out for several days to dry or were placed in an oven (80°F) for several hours. The freeze-dried specimens were frozen by immersion in liquid nitrogen or in isopentane at near liquid nitrogen temperature and then were immediately placed in the freeze-dry vacuum chamber. The critical point specimens were molded in agar immediately after sampling. When the agar had set up the dehydration series, water-alcohol-amyl acetate-CO2 was carried out. The objectives were to compare the fabric plasmas (clays and precipitates), fabricskeletons (quartz grains) and the relationship between them for each drying technique. The three drying methods are not only applicable to the study of treated soils, but can be incorporated into all SEM clay soil studies.


Author(s):  
Shaul Barkan

Cooling down solid state detecors, with other different way then liquid Nitrogen, is a goal of many vendors and customers since the invention of these detectors. THe disadvantage of the common way of liquid Nitrogen is first the inavailibility of the LN in many uses (like space military and any other applications that are not done inside a well organize Laboratory). The use of LN also considers as a Labor consumer in addition to the big dewar that has to be added to any detector for storing the LN, the boiling of the LN, may cause microphonics problesm and the refiling of the dewar in many Labs is a complicated process due to inconvenience location of the microscope.In this paper I will show a spectra result of 10mm2 SiLi detector for microanalysis use, cooled by peltier cooler. The peltier cooler has the advantage of non-microphonics and non-labor needed (like adding LN to the dewar).


Sign in / Sign up

Export Citation Format

Share Document