Controlling devitrification in the FeSiB system without alloying additions

Author(s):  
X. Zhang ◽  
R. Pérez del Real ◽  
M. Vázquez ◽  
W. Liang ◽  
J. Mesa ◽  
...  
Keyword(s):  
Author(s):  
Ian M. Anderson

B2-ordered iron aluminide intermetallic alloys exhibit a combination of attractive properties such as low density and good corrosion resistance. However, the practical applications of these alloys are limited by their poor fracture toughness and low room temperature ductility. One current strategy for overcoming these undesirable properties is to attempt to modify the basic chemistry of the materials with alloying additions. These changes in the chemistry of the material cannot be fully understood without a knowledge of the site-distribution of the alloying elements. In this paper, the site-distributions of a series of 3d-transition metal alloying additions in B2-ordered iron aluminides are studied with ALCHEMI.A series of seven alloys of stoichiometry Fe50AL45Me5, with Me = {Ti, V, Cr, Mn, Co, Ni, Cu}, were prepared with identical heating cycles. Microalloying additions of 0.2% B and 0.1% Zr were also incorporated to strengthen the grain boundaries, but these alloying additions have little influence on the matrix chemistry and are incidental to this study.


Alloy Digest ◽  
2002 ◽  
Vol 51 (7) ◽  

Abstract RA602CA has a high creep rupture strength with alloying additions of titanium, zirconium, and high carbon. High chromium combined with aluminum and yttrium give the alloy a tight oxide scale and good cyclic oxidation behavior. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, and joining. Filing Code: Ni-586. Producer or source: Rolled Alloys Inc.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 519
Author(s):  
Devadas Bhat Panemangalore ◽  
Rajashekhara Shabadi ◽  
Manoj Gupta

In this study, the effect of calcium (Ca) and erbium (Er) on the microstructure, mechanical properties, and corrosion behavior of magnesium-zinc alloys is reported. The alloys were prepared using disintegrated melt deposition (DMD) technique using the alloying additions as Zn, Ca, and Mg-Er master alloys and followed by hot extrusion. Results show that alloying addition of Er has significantly reduced the grain sizes of Mg-Zn alloys and also when compared to pure magnesium base material. It also has substantially enhanced both the tensile and the compressive properties by favoring the formation of MgZn2 type secondary phases that are uniformly distributed during hot-extrusion. The quaternary Mg-Zn-Ca-Er alloy exhibited the highest strength due to lower grain size and particle strengthening due to the influence of the rare earth addition Er. The observed elongation was a result of extensive twinning observed in the alloys. Also, the degradation rates have been substantially reduced as a result of alloying additions and it is attributed to the barrier effect caused by the secondary phases.


2003 ◽  
Vol 18 (2) ◽  
pp. 279-283 ◽  
Author(s):  
B.E. Meacham ◽  
J.E. Shield

The effect of combined alloying additions on the structure and scale of rapidly solidified Sm–Fe alloys was investigated. Transition metal additions tend to promote the formation of the disordered TbCu7-type structure in Sm2Fe17 alloys, as determined by monitoring the long-range order parameter. Essentially no order was observed for M = Ti, Zr, V, or Nb. Thus, the structure was close to the prototypical TbCu7-type structure. With M = Si, a large amount of order was observed (S = 0.62), resulting in a structure closer to the well-ordered Th2Zn17-type. The microstructural scale was also affected by alloying. In this case, refinement depended on the substituent and also on carbon for microstructural refinement. The scale of the as-solidified grain structures ranged from 100 nm for SiC-modified alloys to 13 nm for NbC-modified alloys. The degree of refinement was directly related to the atomic size of the M addition. The refinement was the result of solute partitioning to grain boundaries, resulting in a solute drag effect that lowered the growth rates.


CORROSION ◽  
2012 ◽  
Vol 68 (6) ◽  
pp. 489-498 ◽  
Author(s):  
G. Williams ◽  
K. Gusieva ◽  
N. Birbilis

The influence of neodymium (Nd) alloying additions in the 0.47 wt% to 3.53 wt% range on the localized corrosion behavior of Mg, when freely corroding in aqueous sodium chloride (NaCl) electrolyte, is investigated using an in situ scanning vibrating electrode technique (SVET). For all samples, the point of surface breakdown is an intense focal anode that expands radially with respect to time, revealing a cathodically activated interior, which is galvanically coupled with the local anode at the perimeter. However, for Nd compositions of ≤0.74%, radial expansion ceases within ca. 2 h of initiation, whereupon dark filiform-like corrosion features are observed, which traverse over the exposed Mg surface. For Nd additions of ≥1.25%, the radial expansion continues with time up to a point where the entire intact surface becomes consumed. The intensity of the local anode ring of circular corroded regions is seen to increase as more cathodically activated corroded surface becomes exposed. Mean current density values measured within these corroded areas increase progressively with Nd content, leading to a progressive rise in localized corrosion rates. The cathodic activation of corroded regions is proposed to derive from an enrichment of noble, Nd-rich intermetallic grains caused as the alpha-Mg phase becomes attacked at local anode sites.


2004 ◽  
Vol 68 (3) ◽  
pp. 206-209 ◽  
Author(s):  
Yutaka Koizumi ◽  
Toshiharu Kobayashi ◽  
Tadaharu Yokokawa ◽  
Makoto Osawa ◽  
Hiroshi Harada ◽  
...  

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 85
Author(s):  
Murtatha M. Jamel ◽  
Mostafa M. Jamel ◽  
Hugo F. Lopez

The increased demand for alloys that can serve as implantation devices with outstanding bio-properties has led to the development of numerous biomedical Mg-based alloys. These alloys have been extensively investigated for their performance in living tissue with mixed results. Hence, there are still major concerns regarding the use of magnesium alloys for such applications. Among the issues raised are elevated corrosion rates, hydrogen generation, and the maintenance of mechanical integrity for designated healing times. In addition, toxicity can arise from the addition of alloying elements that are intended to improve the mechanical integrity and corrosion resistance of Mg alloys. The current work reviews the recent advances in the development of Mg alloys for applications as bio-absorbable materials in living organic environments. In particular, it attempts to develop a roadmap of effective factors that can be utilized when designing Mg alloys. Among the factors reviewed are the effects of alloying additions and processing methods on the exhibited mechanical properties and corrosion rates in simulated bio-fluids used in biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document