scholarly journals Corrosion Behavior, Microstructure and Mechanical Properties of Novel Mg-Zn-Ca-Er Alloy for Bio-Medical Applications

Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 519
Author(s):  
Devadas Bhat Panemangalore ◽  
Rajashekhara Shabadi ◽  
Manoj Gupta

In this study, the effect of calcium (Ca) and erbium (Er) on the microstructure, mechanical properties, and corrosion behavior of magnesium-zinc alloys is reported. The alloys were prepared using disintegrated melt deposition (DMD) technique using the alloying additions as Zn, Ca, and Mg-Er master alloys and followed by hot extrusion. Results show that alloying addition of Er has significantly reduced the grain sizes of Mg-Zn alloys and also when compared to pure magnesium base material. It also has substantially enhanced both the tensile and the compressive properties by favoring the formation of MgZn2 type secondary phases that are uniformly distributed during hot-extrusion. The quaternary Mg-Zn-Ca-Er alloy exhibited the highest strength due to lower grain size and particle strengthening due to the influence of the rare earth addition Er. The observed elongation was a result of extensive twinning observed in the alloys. Also, the degradation rates have been substantially reduced as a result of alloying additions and it is attributed to the barrier effect caused by the secondary phases.

Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1014 ◽  
Author(s):  
Gururaj Parande ◽  
Vyasaraj Manakari ◽  
Saif Wakeel ◽  
Milli Kujur ◽  
Manoj Gupta

The present study focuses on investigating the effects of Nickel-Titanium (NiTi) nanoparticles on the microstructure and properties of pure Mg. Mg composites containing varying weight percentages (0.5, 1, 1.5, 3) of NiTi nanoparticles were fabricated using Disintegrated Melt Deposition (DMD), followed by hot extrusion. The synthesized materials were characterized in order to investigate their physical, microstructural and mechanical properties. Synthesized materials were characterized for their density and porosity levels, microstructural characteristics, and mechanical response. Superior grain refinement was realized by the presence of NiTi nanoparticles in the magnesium matrix. The addition of NiTi nanoparticles resulted in strength property enhancements of pure Mg with minimal adverse effect on the ductility. Structure-property evaluations are detailed in the current study.


2019 ◽  
Vol 9 (24) ◽  
pp. 5470
Author(s):  
Sravya Tekumalla ◽  
Ng Joo Yuan ◽  
Meysam Haghshenas ◽  
Manoj Gupta

In this study, the effect of nano-B4C addition on the property profile of Elektron 21 (E21) alloys is investigated. E21 reinforced with different amounts of nano-size B4C particulates was synthesized using the disintegrated melt deposition technique followed by hot extrusion. Microstructural characterization of the developed E21-B4C composites revealed refined grains with the progressive addition of boron carbide nanoparticles. The evaluation of mechanical properties indicated a significant improvement in the yield strength of the nanocomposites under compressive loading. Further, the E21-2.5B4C nanocomposites exhibited the best damping characteristics, highest young’s modulus, and highest resistance to ignition, thus featuring all the characteristics of a material suitable for several aircraft applications besides the currently allowed seat frames. The superior mechanical properties of the E21-B4C nanocomposites are attributed to the refined grain sizes, uniform distribution of the nanoparticles, and the thermal insulating effects of nano-B4C particles.


2012 ◽  
Vol 232 ◽  
pp. 162-166 ◽  
Author(s):  
Ying Long Zhou ◽  
Dong Mei Luo ◽  
Yun Cang Li ◽  
Cui'e Wen ◽  
Peter D. Hodgson

The microstructures, mechanical properties, corrosion behavior, and biocompatibility of hot-extruded Mg-Zr-Ca alloys have been investigated for potential use in orthopedic applications. The microstructures of the alloys are examined by X-ray diffraction analysis and optical microscopy. The mechanical properties of Mg-Zr-Ca alloys are determined from compressive tests, the corrosion behavior is studied using immersion tests, and biocompatibility is evaluated by cell growth factor using osteoblast-like SaOS2 cell. The experimental results indicate that the hot-extruded alloys have much higher compressive strength than the as-cast alloys and the human bone, and can offer good mechanical properties for orthopedic applications. The hot-extrusion significantly enhances corrosion resistance of the alloys. Among the alloys, the hot-extruded Mg-0.5Zr-1Ca and Mg-1Zr-1Ca alloys possess good combination of mechanical properties, corrosion resistance, and biocompatibility, suggesting that they have a great potential to be good candidates for orthopedic applications.


2013 ◽  
Vol 712-715 ◽  
pp. 623-626
Author(s):  
Dong Wang ◽  
Chang Shu He ◽  
Zhen Yu Qi ◽  
Hao Wang ◽  
Xiang Zhao ◽  
...  

3-mm thick Al-12.7Si-0.7Mg alloy plates were cut from the hot extrusion profiles. A butt-welding joint was made by gas metal arc welding (GMAW). The microstructures and mechanical properties of welded joint were studied by scanning electron microscope and tensile test methods. The results show that weld bead with good appearance and internal quality was obtained under the optimized welding parameters. The ultimate tensile strength for base material and welded joints of hot extrusion Al-12.7Si-0.7Mg alloy are much higher than that of 6063 alloy in T4 condition.


2005 ◽  
Vol 488-489 ◽  
pp. 839-844 ◽  
Author(s):  
Young Gee Na ◽  
Dan Eliezer ◽  
Kwang Seon Shin

The development of new components with magnesium alloys for the automotive industry has increased in recent years due to their high potential as structural materials for low density and high strength/weight ratio demands. However, the limited mechanical properties of the magnesium alloys have led to search new kind of magnesium alloys for better strength and ductility. The main objective of this research is to investigate the mechanical properties and the corrosion behavior of new wrought magnesium alloys; Mg-Zn-Ag (ZQ) and Mg-Zn-Si (ZS) alloys. The ZQ6X and ZS6X samples were fabricated using hot extrusion method. Tensile tests and immersion tests were carried out on the specimens from the extruded rods, which contained different amounts of silver or silicon, in order to evaluate the mechanical properties and corrosion behavior. The microstructure was examined using optical and electron microscopy (TEM and SEM) and EDS. The results showed that the addition of silver improved the mechanical properties but decreased the corrosion resistance. The addition of silicon improved both mechanical properties and corrosion resistance. These results can be explained by the effects of alloying elements on the microstructures of the Mg-Zn alloys such as grain size and precipitates caused by the change in precipitation and recrystallization behavior.


Author(s):  
S. Han ◽  
M. E. Alam ◽  
A. M. S. Hamouda ◽  
Q. B. Nguyen ◽  
M. Gupta

In the present study, AZ31-Al2O3-Al magnesium nano-composites were successfully synthesized using an innovative disintegrated melt deposition technique followed by hot extrusion. Microstructural characterization studies revealed uniaxial grain size, reasonably uniform distribution of particulates/intermetallics in the matrix and minimal porosity. Physical properties characterization revealed that addition of both nano-Al2O3 and Al reduced the coefficient of thermal expansion (CTE) of monolithic AZ31. The presence of both Al2O3 particulates and aluminum also assisted in improving overall mechanical properties including microhardness, UTS, ductility and work of fracture of AZ31. The results suggest that these composites have significant potential in diverse engineering applications when compared to AZ31 alloy.


2014 ◽  
Vol 788 ◽  
pp. 127-133 ◽  
Author(s):  
Zhi Wen Shao ◽  
Xiu Rong Zhu ◽  
Jun Wang ◽  
Rong Wang ◽  
Yong Dong Xu ◽  
...  

The hot backward extrusion process of the Mg-Gd-Y-Zn-Zr magnesium alloy was investigated by both numerical simulation and experiments. An axisymmetric 2D rigid-plastic finite element model (FEM) was established to simulate the material flow during the extrusion process. The shapes of the dies were optimized in order to avoid severe stress concentration and obtain uniform deformation of the workpiece. After hot extrusion, the microstructures of the alloys were obviously refined, and the secondary phases which included many long-period stacking order (LPSO) phases precipitated in the matrix. The optimal comprehensive mechanical properties of the alloy have been obtained after extrusion and ageing at 200°C for 48h with the ultimate tensile strength of 434MPa, tensile yield strength of 375MPa and elongation of 4.5%, respectively. The good mechanical properties were mainly attributed to the fine microstructures and numerous precipitates in the matrix.


2017 ◽  
Vol 891 ◽  
pp. 400-403 ◽  
Author(s):  
Iva Pospíšilová ◽  
Věra Soukupová ◽  
Dalibor Vojtěch

In this work, Zn-1.5Mg-0.5Ca alloy was studied. The alloy composition was chosen according to the results of our previous work that was focused on the research of biodegradable materials. The mechanical properties of such cast alloy are similar to the characteristics of human bones. Moreover, Zn-1.5Mg alloy itself satisfies biocompatibility requirements. The main goal of this work was to improve the mechanical properties of this alloy. A small addition of calcium affected both the alloy microstructure and mechanical properties. Light microscope and scanning electron microscope were used for the analysis of microstructure. After calcium addition, secondary phases were visible in observed micrographs; their composition was verified by XRD. Mechanical properties (Vickers hardness, compressive and tensile tests) were studied and compared with the Zn-1.5Mg alloy prepared in our previous work. Based on presented results, Zn-1.5Mg-0.5Ca alloy is intended for use in medicine as a suitable material for temporary implants.


Author(s):  
Q. B. Nguyen ◽  
Y. H. D. Chua ◽  
K. S. Tun ◽  
J. Chan ◽  
R. Kwok ◽  
...  

In this paper, AZ61 magnesium alloy composites containing nanoalumina and micron-sized copper particulates are synthesized using the technique of disintegrated melt deposition followed by hot extrusion. The simultaneous addition of nano-Al2O3 and copper particulates led to an overall improvement in both microstructural characteristics in terms of distribution and morphology of secondary phases and mechanical response of AZ61. The presence of nanoalumina particulates broke down and dispersed the secondary phase Mg17Al12. The 0.2% yield strength increased from 216 MPa to 274 MPa. The ductility increased from 8.4% to 9.3% in the case of the AZ61-1.5Al2O3 sample. The results of aging heat treatment in the case of the AZ61-1.5Al2O3-1Cu sample showed significant improvement in both tensile strength, ductility, and work of fracture (54% increment). An attempt is made to correlate the tensile response of composites with their microstructural characteristics.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 425
Author(s):  
Liyuan Sheng ◽  
Xingru Zhang ◽  
Hui Zhao ◽  
Beining Du ◽  
Yufeng Zheng ◽  
...  

In the present research, a Mg–4Zn–1.2Y–0.8Nd (wt.%) alloy was heat treated and hot extruded with different passes. XRD, SEM, TEM and tensile testing were employed to characterize the microstructure evolution and mechanical properties. The results exhibited that the semi-continuously distributed W-Mg3Zn3Y2 phases formed the skeleton structure which separated the α-Mg matrix into a dual-size grain structure. In addition, the Mg24Y5, Mg41Nd5 and Y2O3 phase was also observed in the heat-treated alloy. Moreover, it was found that the Mg24Y5 phase had an orientation relationship with the α-Mg matrix of α[111]Mg24Y5//[0001]α-Mg and α(101¯)Mg24Y5//(101¯0)α-Mg, and the Mg41Nd5 phase had an orientation relationship with the α-Mg matrix of α[001]Mg41Nd5//[0001]α-Mg. The one-pass hot extrusion segmented the secondary phases into small ones and refined the α-Mg matrix. Due to the partly recrystallization and crystal orientation difference, the coarse elongated grain surrounded by fine recrystallized grain and secondary phase was the main feature of the one-pass hot extruded alloy. Furthermore, the secondary phases exhibited the linear distribution along the direction of hot extrusion. The two-pass hot extrusion refined the secondary phase and matrix further, which produced the ultrafine α-Mg matrix with uniform grain size and a well redistributed secondary phase. Due to the microstructure optimization by the multi-pass hot extrusion, the ductility and strength of the Mg–Zn–Y–Nd alloy were well improved, especially the two-pass hot extruded alloy which was significant improved in ductility and strength simultaneously.


Sign in / Sign up

Export Citation Format

Share Document