Interfacial Plasticity Mediated by Lath Boundaries in Reduced-Activation Ferritic/Martensitic Steels

2021 ◽  
pp. 153439
Author(s):  
Hadi Ghaffarian ◽  
Ye-Eun Na ◽  
Dongchan Jang
Keyword(s):  
2009 ◽  
Vol 289-292 ◽  
pp. 293-300
Author(s):  
L. Sánchez ◽  
F.J. Bolívar ◽  
M.P. Hierro ◽  
F.J. Pérez

In this work, iron aluminide coatings were developed by Chemical Vapor Deposition in Fluidized Bed Reactor (CVD-FBR) on ferritic-martensitic steels. Small additions of zirconium powder were introduced in the fluidized bed; as a consequence, the obtained coatings are thicker than that without zirconium additions. When Zr powders are added in the fluidized bed, the deposition atmosphere drastically changes, leading to increase the deposition rate. Thermodynamic calculations were carried out to simulate the modifications in the CVD atmosphere in the Al/Zr deposition system in comparison to the single aluminization. In order to optimize the conditions of the deposition, parameters such as temperature and concentration of zirconium introduced into the bed were evaluated and compared with the results obtained for the single aluminum deposition.


2010 ◽  
Vol 73 ◽  
pp. 36-40 ◽  
Author(s):  
Ana Morán ◽  
Rubén Coto ◽  
Javier Belzunce ◽  
Jose Manuel Artímez

<span><span style="font-family: Times New Roman;">Ferritic/Martensitic steels, with chromium contents ranging between 9 and 12%, were introduced into fusion material programs due to their better creep resistance and excellent thermal and nuclear properties compared to austenitic stainless steels. Reduced activation ferritic/martensitic (RAFM) steels are considered promising candidates for the test blanket modules of the future International Thermonuclear Experimental Reactor (ITER), being EUROFER steel is the EU reference material. It is a 9 % Cr RAFM steel which exhibits a tempered martensitic <span style="font-family: Times New Roman;">microstructure and presently allows operation up to 550 </span><span style="font-family: Cambria Math;">⁰</span><span style="font-family: Times New Roman;">C. This paper shows the work carried out</span></span><span style="font-family: Times New Roman;"><span style="font-family: Times New Roman;"> to develop at a pilot plant scale a Reduced Activation Ferritic/Martensitic (RAFM) steel, Asturfer </span><span style="font-family: Times New Roman; font-size: xx-small;"><span style="font-family: Times New Roman; font-size: xx-small;">®</span></span><span style="font-family: Times New Roman;">,</span></span><span style="font-family: Times New Roman;"> with chemical composition and mechanical properties very close to EUROFER steel. </span>


2012 ◽  
Vol 48 (3) ◽  
pp. 461-469 ◽  
Author(s):  
L. Falat ◽  
V. Homolová ◽  
J. Kepic ◽  
M. Svoboda ◽  
A. Výrostková

The studies were performed on dissimilar ferritic/austenitic weldments between 9Cr tempered martensitic steels of the grades either P/T 91 or 92 and unstabilised AISI316H austenitic steel. The welded joints were fabricated using the fusion welding by tungsten inert gas (TIG) method with Ni-based filler metal. Microstructural analyses were performed using light and electron microscopy. Microstructural gradient in heat-affected zone (HAZ) of 9Cr steels remained preserved during creep exposure. All weldments fractured by the type IV failure within their intercritical HAZ (ICHAZ) regions. The most remarkable microstructural change during creep was the precipitation of intermetallic Laves phase. Experimentally determined phases of the samples after creep exposure are in good agreement with equilibrium thermodynamic calculations.


2014 ◽  
Vol 89 (7-8) ◽  
pp. 1573-1578 ◽  
Author(s):  
Hiroyasu Tanigawa ◽  
Yoji Someya ◽  
Hideo Sakasegawa ◽  
Takanori Hirose ◽  
Kentaro Ochiai

2012 ◽  
Vol 323-325 ◽  
pp. 485-490 ◽  
Author(s):  
L. Moli-Sanchez ◽  
F. Martin ◽  
E. Leunis ◽  
J. Chêne ◽  
M. Wery

The electrochemical permeation technique was used to evaluate the effect of the microstructure on hydrogen diffusivity and hydrogen trapping at room temperature in martensitic steels. A detailed study of the electrochemical permeation technique was first performed in order to identify the boundary conditions of a permeation test in the selected experimental set-up. The validity of the apparent diffusion coefficient derived from this test is also discussed. A 34CrMo4 quenched steel has been selected and designed at three tempering temperatures (200°C, 540°C and 680°C) in order to obtain three different microstructures. According to permeation measurements, H diffusion strongly depends on the microstructure. The material tempered at 540°C exhibits the smallest diffusion coefficient and the largest fraction of reversible traps at room temperature.


Sign in / Sign up

Export Citation Format

Share Document